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Chapter 1

Introduction

Natural language processing (NLP) seeks to build algorithms that analyze, understand, and

generate human language. Traditional systems depended on hand-engineered features and

task-specific models (for example, SVMs and early neural models such as RNNs). Before

the current wave of progress, gains in NLP tended to be gradual and tied to specific tasks.

That changed with the arrival of the Transformer architecture (Vaswani et al. 2017) and

large-scale pretraining. In simple terms, Transformers are neural language models that use

self-attention to decide which parts of a sequence should influence each other. They can

be built with an encoder (which reads text and builds rich contextual representations), a

decoder (which generates text one token at a time), or both. Well-known encoder-only models

like BERT learn to fill in masked words using context from both sides (Devlin et al. 2019),

while decoder-only models like GPT-2 learn to predict the next token from left-to-right.

Trained on massive corpora, these models acquire general-purpose representations that can

be adapted to many tasks with minimal engineering, and they capture a surprising amount

of syntactic and semantic structure (Rogers et al. 2020). This paradigm shift has made the

Transformer family the default choice across a wide range of benchmarks and real-world

applications, redirecting attention from bespoke feature design to the reuse and adaptation of

general-purpose models. The Transformer family has become the default architecture across a

wide range of benchmarks and real-world applications, shifting the field’s focus from bespoke

feature engineering to the reuse and adaptation of general-purpose models. Despite this

success and the breadth of applications, substantial research challenges remain. Contemporary

models are exceptionally large and hungry for data, compute, and energy, constraints that

limit accessibility and raise environmental concerns. Their internal decision processes also

remain difficult to explain, which is why they are often described as “black boxes.” Ethical

and governance questions naturally follow from this scale and opacity; while these are not the

focus of this work, we note that the EU AI Act entered into force on 1 August 2024, with

key obligations for general-purpose AI set to apply from 2 August 2025 (European Union 2025).

Within this landscape, my thesis concentrates on two themes that currently dominate

the discussion: efficiency and interpretability.
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• Efficiency is about enabling NLP models to do more, faster, and with fewer resources,

whether that means less training data, less compute power, lower memory usage, shorter

inference time, or lower energy consumption. The goal is to scale performance not just

by making models bigger but by making them smarter in how they learn and operate.

Techniques such as model distillation, cascading (using smaller models first and larger ones

only when necessary), pruning, quantization, and more efficient attention mechanisms are

some ways to push forward.

• Interpretability is concerned with our ability to understand why a model behaves the

way it does what internal patterns, representations, or features lead to a certain output.

This includes both global interpretability (what the model has learned overall) and local

interpretability (why a specific prediction was made). This is especially important when

dealing with language. Interpretability helps surface bias, unfair treatment, or errors in

under-represented linguistic settings. Surveys of fairness in large language models show

how structural or training data biases get amplified and how interpretability tools are

needed to diagnose and mitigate such issues.

My research focuses principally on the second point, with the aim of influencing the first as

well. Interpretability in large language models (LLMs) refers to the quest for understanding

how and why these models produce their outputs. This covers not just what goes in and what

comes out, but internal representations, decision pathways, and how linguistic phenomena are

encoded. LLMs are often treated as black boxes, but interpretability aims to open them up:

to reveal which neurons respond to which features, how layers transform meaning, and how

model components interact causally. Research in this area includes surveys of explainability

methods that address input-output behaviour, probing and representation analysis to see what

information layers register, and mechanistic interpretability, which attempts to trace internal

circuits or causal paths in the network to map model behaviour more transparently. A core

challenge faithfulness: explanations must accurately reflect what the model is actually doing,

not just provide plausible narratives. Because LLMs are complex and may mix or “superpose”

features, disentangling them in a reliable way remains a difficult problem.

1.1 Research questions

This proposal adopts a geometric view of representation learning in large language models.

We treat hidden activations as point clouds and study how their shape changes across depth,

training, and adaptation. Our analyses rely on compact, basis-independent descriptors that

summarize both the effective complexity of a representation set and how broadly it occupies

the ambient space. The aim is to link these metrics to modeling choices (objective, architec-

ture, curriculum, supervision), to observable outcomes (transfer, retrieval, calibration), and to

interpretable accounts of model computation.
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Core research questions

RQ1: How do shape and spread evolve across layers in pretrained encoders and decoders, and

is there a consistent trajectory (e.g., expansion, compression)? How do these profiles vary

with training objective and model scale?

RQ2: How does representation geometry develop over the course of pretraining, and does

ordering the same data by curriculum (rather than at random) change the speed or the

shape of consolidation? Can early geometric signals predict downstream performance?

RQ3: How do different fine-tuning strategies reshape geometry across the stack, and are these

changes transient or persistent when tasks or domains change?

RQ4: Can geometric properties of representations reliably characterize and distinguish lin-

guistic phenomena (e.g. semantics , syntax, morphology), and are these patterns consistent

across languages?

RQ5: When we steer models toward human-like learning (e.g., by incorporating eye-tracking

and other cognitive signals during adaptation) how are representation geometry and attention

allocation affected? Do these shifts align with improvements in accuracy or calibration?

RQ6: To what extent do global and local geometric properties correlate with downstream

usefulness, such as linear transfer, retrieval and clustering quality, and confidence during

generation, and can geometry act as an early indicator of improvement or degradation?

List of published works

• From Human Reading to NLM Understanding: Evaluating the Role of Eye-Tracking Data

in Encoder-Based Models (Luca Dini, Lucia Domenichelli, Dominique Brunato, Felice

Dell’Orletta). In Proceedings of the 63rd Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers), pages 17796–17813, Vienna, Austria.

Association for Computational Linguistics.

• The Role of Eye-Tracking Data in Encoder-Based Models: an In-depth Linguistic Analysis

(Lucia Domenichelli, Luca Dini, Dominique Brunato, Felice Dell’Orletta). In Proceed-

ings of the 11th Italian Conference on Computational Linguistics (CLiC-it 2025) (AC-

CEPTED).
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Chapter 2

Related work and SOTA

This chapter introduces three broad perspectives to explore large language models (LLMs):

architecture, interpretability, and the geometry of embedding spaces. The goal is to look beyond

benchmark scores and give a clear, high-level account of how models are built, how their internal

behavior can be examined, and how their learned representations are organized. First, we take

a systems view of current LLMs, outlining the main building blocks and how information moves

through them. The aim is not to catalog variants, but to establish a common vocabulary for

later analyses. Then we summarize practical approaches for relating internal states to model

behavior. The focus is on methods that provide testable evidence about what is encoded and

how it is used, without committing to a specific technique or task. To conclude, we treat model

activations as point sets in a high-dimensional space and describe their global structure using

simple geometric descriptors (e.g., how many directions matter and how evenly they are used).

This view offers compact summaries that are comparable across models and training regimes.

2.0.1 Architectural foundations

The Transformer (see Figure 2.1) is the backbone of modern language models and many multi-

modal systems (Vaswani et al. 2017). A Transformer processes a sequence of token embeddings

with a stack of identical blocks. Each block has two parts. Self-attention mixes informa-

tion across positions based on content so that a token can consult other tokens in the same

sequence. A feed-forward network then applies a learned non-linear transformation to each

position. Residual connections carry a running representation across depth and normalization

keeps scales stable. We will refer to this running representation as the residual stream, since it

is the pathway where information accumulates layer by layer. Practical models use multi-head

attention to capture different interaction patterns in parallel, and they inject positional infor-

mation so the model knows the order of tokens. Decoder-only LMs use a causal mask that

prevents access to future tokens and supports left-to-right generation. Encoder–decoder mod-

els add cross-attention so the decoder can query encoder states, which is useful for tasks like

translation and summarization. Later we detail the block internals and implementation choices,

but the basic picture is: attention routes information, feed-forward layers transform it, and the

residual stream aggregates it through depth.
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Layer normalization and the residual stream Throughout the stack, the state propagated

along the residual pathway encodes the model’s current working representation for each token.

In pre-norm layouts, this state is normalized before each sublayer, which improves gradient flow

in deep networks. Writing Rℓ ∈ Rn×dmodel for the residual stream entering layer ℓ, a canonical

pre-norm block is

R̃ℓ = Norm(Rℓ), Aℓ = MHA(R̃ℓ), Rattn
ℓ = Rℓ +Aℓ,

R̃attn
ℓ = Norm(Rattn

ℓ ), Mℓ = FFN(R̃attn
ℓ ), Rℓ+1 = Rattn

ℓ +Mℓ.

where MHA stands for Multi-Head Attention and FFN for Feed-Forward Network. Layer nor-

malization is applied per token along the feature dimension: for x ∈ Rdmodel ,

LayerNorm(x) = g ⊙ x− µ(x)√
σ2(x) + ε

+ b,

with learned gain g and bias b. RMSNorm variants omit mean subtraction and rescale by the

root-mean-square, RMSNorm(x) = g ⊙ x√
1

dmodel
∥x∥22+ε

. In all cases, the residual stream remains

the single carrier of information across depth; attention and the FFN read from its normalized

form and write updates back via residual addition.

Attention Given a sequence X ∈ Rn×dmodel , learned projections produce queries, keys, and

values: Q = XWQ, K = XWK , V = XWV , with WQ,WK ∈ Rdmodel×dk and WV ∈ Rdmodel×dv .

Scaled dot-product attention computes a content-addressed read from V using similarities be-

tween Q and K:

Attention(Q,K, V ) = Softmax
(
QK⊤+M√

dk

)
V,

where M ∈ Rn×n encodes padding or causal masks (disallowing attention to future positions

in decoder-only LMs). The softmax acts row-wise so that each query forms a distribution over

keys, the resulting weights yield a convex combination of value vectors and an output in Rn×dv .

Multi-head and block structure. Rather than a single map, MHA runs h heads with sepa-

rate projections {W (i)
Q ,W

(i)
K ,W

(i)
V }hi=1, their outputs are concatenated and linearly projected:

MHA(X) = Concat
(
Attention(XW

(i)
Q , XW

(i)
K , XW

(i)
V )

)h
i=1

WO,

with WO ∈ R(h dv)×dmodel . The FFN applies a two-layer MLP with expansion factor dff≫dmodel

and a gated or smooth nonlinearity (e.g., GELU or SwiGLU), independently at each position. In

decoder-only LLMs, causal masking enforces left-to-right factorization, encoder–decoder models

additionally include cross-attention in the decoder to access encoder states.

Positional information and efficiency variants Because attention is permutation-

equivariant, position must be injected explicitly, commonly via absolute or relative encodings,

or rotary position embeddings (RoPE) that rotate Q,K in a position-dependent manner and
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help length extrapolation. Efficiency-oriented refinements adjust this template without chang-

ing the core dataflow: multi-query or grouped attention reduces memory bandwidth at decode

time by sharing K,V across heads, sparse or block-local patterns trade global context for sub-

quadratic complexity, mixture-of-experts (MoE) layers route tokens through a small subset of

expert FFNs to increase capacity at roughly constant per-token FLOPs (Shazeer et al. 2017),

optimized kernels such as FlashAttention minimize memory traffic via tiling while preserving

exact results (Dao et al. 2022).

Figure 2.1: The Transformer architecture [From: Vaswani et al. 2017].

Hidden states and where to extract them With the residual-stream perspective in

place, it is useful to make the extraction sites explicit, as they correspond to distinct semantics.

Let R0 denote the input embeddings (after positional encoding). At layer ℓ, the pre-attention

normalized state R̃ℓ = Norm(Rℓ) is the input seen by the attention mechanism, its content

reflects what the model has computed up to that depth, before any new contextual mixing.

The attention write Aℓ (after output projection) encodes context-dependent updates assembled

by comparing queries and keys, the updated residual Rattn
ℓ = Rℓ+Aℓ aggregates all contributions

up to and including attention at layer ℓ. The pre-FFN normalized state R̃attn
ℓ = Norm(Rattn

ℓ )

is then consumed by the MLP, whose write Mℓ introduces new nonlinear features, the block

output Rℓ+1 = Rattn
ℓ +Mℓ is the natural choice when a single per-layer representation is desired.

A representation of this ”information highway” can be seen in Figure 2.2.

In encoder models, sentence-level vectors are often formed from the final residual stream by

pooling (e.g., mean or attention pooling) or by selecting a designated token, in decoder-only

LMs, token-level states at the final position align with next-token prediction, while span- or

10



Rℓ Norm
MHA

(Q,K, V )
+ Norm FFN + Rℓ+1

R̃ℓ Aℓ Rattn
ℓ R̃attn

ℓ Mℓ

Figure 2.2: Residual-stream dataflow within one Transformer block and common extraction
points: R̃ℓ, Aℓ, R

attn
ℓ , R̃attn

ℓ , Mℓ, and the block outputs Rℓ/Rℓ+1.

sentence-level embeddings are typically obtained by pooling across positions or by extracting

intermediate layers to trade off semantic abstraction and syntactic detail. For analyses targeting

specific computations, finer-grained options such as per-head outputs before concatenation, or

the Q,K, V projections themselves can be informative, but the residual stream remains the

canonical locus for “hidden states,” since it is the sole pathway that persists across depth and

accumulates all writes.

2.0.2 Pretraining objectives

Modern language models share the common backbone of the Transformer, but the pretraining

objective determines what their internal representations come to encode. Formally, given a

corpus D, a corruption/conditioning operator C, and parameters θ, pretraining minimizes:

L(θ) = Ex∼D
[
ℓ
(
fθ(C(x)), x

) ]
,

so the hidden states {ϕℓ(x; θ)} are pressured to become sufficient statistics for predicting the

targets specified by L. In this sense, the objective, not the architecture, primarily defines the

representations: it decides which information is preserved, which invariances are preferred, and

which contextual dependencies are emphasized. The Transformer itself is agnostic and can serve

as encoder, decoder, or encoder–decoder, what changes the model’s behavior, and the semantics

of its hidden states, is the pretraining objective that defines the learning signal.

Let x = (w1, . . . , wT ) denote a text sequence drawn from the data distribution D, and let pθ

be a parametric model. Three objective families dominate.

(A) Masked language modeling (encoder-only) Mask a random subset M ⊂ {1, . . . , T}
and predict only the masked tokens from their bidirectional context:

max
θ

Ex EM

[ ∑
t∈M

log pθ
(
wt

∣∣ x\M)]
.

This yields bidirectional (Figure 2.3 left) contextual encoders. RoBERTa optimizes the same

loss with dynamic masking and larger corpora, SpanBERT extends masking to contiguous spans.

For intrinsic scoring with MLMs, a common surrogate is the pseudo-log-likelihood PLL(x) =∑
t log pθ

(
wt | x\t

)
.
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(B) Autoregressive / causal language modeling (decoder-only) Factorize by the chain

rule and maximize the causal log-likelihood:

max
θ

Ex∼D

[
log pθ(x)

]
= Ex

[ T∑
t=1

log pθ(wt | w<t)
]
.

This induces a left-to-right conditioning structure and directly supports open-ended generation

and perplexity evaluation (Figure 2.3 right). Scaling this objective underpins GPT-style models.

(C) Denoising autoencoder pretraining (encoder–decoder) Use an encoder–decoder

and predict the clean target from a corrupted source:

max
θ

Ex∼D Ex̃∼q(·|x)

[
log pθ

(
x | x̃

)]
,

where q(x̃ | x) is a corruption process. Prominent instantiations differ in q and the target: T5

uses span corruption with sentinel tokens (text-to-text), BART mixes token masking, deletion,

permutation, and sentence shuffling, MASS masks a contiguous fragment on the encoder side

and predicts it with the decoder. These objectives excel for instruction-following and generation

with explicit conditioning.

Lucia is MASK a thè

Masked (Bidirectional) LM

Context from both directions

Lucia is drinking a thè

Causal (Autoregressive) LM

Left-to-right context only

Figure 2.3: Comparison of masked (bidirectional) and causal (autoregressive) language modeling
objectives. Arrows indicate the permitted flow of contextual information for predicting the
target token.

2.1 Representation space: from black-box evaluation to mech-

anistic analyses

The great performance and opacity of the internal computations of Language Models have

driven a wide range of interpretability methodologies. At one end are black-box evaluations that

systematically benchmark models without assuming access to inner mechanisms (Liang et al.

2022). At the other end, mechanistic studies attempt to open the box and localize computations

in specific substructures, including causal circuit discovery and interventions that edit or trace

factual associations (Meng et al. 2022; Conmy et al. 2023; Geva et al. 2021; Ferrando et al.

2024). Between these extremes lies a geometric perspective that treats activations as point

clouds and analyzes their structure across layers, which is the one we decided to pursue.
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2.1.1 Probing

Probing provides a high-level interface for inspecting what information is present in a model’s

internal states without changing the model itself (see Figure 2.4). The procedure is to freeze

the language model, extract hidden representations at a chosen layer and position, and train a

small auxiliary predictor to recover a target variable, for example part of speech, dependency

distance, sentence polarity (Miaschi and Dell’Orletta 2020). If the predictor succeeds under

controlled capacity, the representation is said to encode that variable (Alain and Bengio 2016;

Belinkov 2022). A probe measures decodability from a given representation, not whether the

model uses that information during inference, availability is not causality. Stronger claims

require pairing probes with targeted interventions or ablations.

Two common designs are linear probes, which test whether a variable is recoverable by

an affine map, and structural probes, which ask whether a structured object such as a

dependency tree or distances in a latent metric can be recovered by a simple transformation

(Hewitt and Manning 2019). An Information-theoretic framings quantify how much infor-

mation about a variable is present in the representation and use minimum-description-length

criteria to balance fit against probe complexity (Pimentel et al. 2020; Voita and Titov

2020). Good practice fixes the extraction protocol (layer, token position or pooling rule, and

normalization), constrains probe capacity and regularization, and reports selectivity using

control tasks that are learnable by the probe but not supported by the representation (Hewitt

and Liang 2019; Belinkov 2022). Linear probes offer conservative, comparable tests across

layers and models. Shallow non-linear probes can reveal information that is present but not

linearly aligned, although higher capacity increases overfitting risk and weakens interpretability.

Probe outcomes depend on the geometry of the embedding space. Global anisotropy

can inflate cosine-based scores unless states are centered or dominant directions are removed,

local structure often looks more uniform than global summaries suggest (Ethayarajh 2019a;

Cai et al. 2021). Conversely, low effective dimensionality can coincide with easier decodability

for variables that dominate the available degrees of freedom (Ansuini et al. 2019). For compa-

rability, it is helpful to fix normalization, document isotropy and dimensionality summaries,

and interpret probe results in that context (Rudman et al. 2022a; Belinkov 2022).

2.1.2 Mechanistic approach: Sparse Autoencoders

The starting point is the Linear representation hypothesis: many high-level variables that matter

for model behavior are encoded as approximately linear directions or low-dimensional subspaces

inside the residual stream. Classic evidence came from linear regularities in word vectors and

from interventions that add or subtract activation directions to steer model outputs. More

recent analyses of superposition show why single neurons often mix many concepts and why we

should expect features to live in sparse directions spread across neurons rather than in individual

units. At the same time, there is growing evidence that some variables are only partly linear

and may require small subspaces rather than a single direction. These observations motivate a

tool that can make such sparse directions explicit and test them with causal interventions (Park
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Figure 2.4: Probing Transformer internal representations. [From: “Notebook 1.2: Probing” in
the XNLM Lab (AILC LCL 2023).]

et al. 2023; Elhage et al. 2022).

A sparse autoencoder (SAE) is a simple way to expose this structure. Given activations hℓ,t(x) ∈
Rd from a chosen layer ℓ and token position t, an SAE learns an overcomplete dictionary

D ∈ Rd×m and sparse codes a(x) ∈ Rm such that:

hℓ,t(x) ≈ Da(x), a(x) = s
(
W hℓ,t(x) + b

)
,

with a sparsifying nonlinearity s(·) that makes only a few latent features active for each input.

In practice, each latent often fires on a coherent pattern in text, such as a particular morphology,

a style marker, or an entity class. This factorization turns an opaque vector into a short list

of human-checkable features and gives a direct handle for causal tests: we can ablate a feature

by zeroing its latent, or add it by injecting Dei scaled by a small coefficient, then measure the

effect on the model’s predictions. Large-scale studies report that as the dictionary grows and

training is tuned, more latents become monosemantic and the decomposition captures a larger

share of the original signal (Cunningham et al. 2023; Templeton et al. 2024).

There are several practical choices. Where to tap the model matters: many works train SAEs

on the pre-normalized residual stream or on block writes such as MLP outputs, since these loci

aggregate information that is passed forward. How to enforce sparsity also matters. Early SAEs

used ℓ1 penalties or fixed k-sparse encoders (TopK ). Newer variants separate “which features

fire” from “by how much” using Gated SAEs, introduce discontinuous activations to better

match ℓ0 sparsity with JumpReLU, or let the effective k vary across examples with BatchTopK.

These changes improve the reconstruction-sparsity trade-off and reduce pathologies such as

shrinkage or dead latents. In practice one monitors both reconstruction quality and sparsity,

and inspects feature quality with automated labeling or small human audits (Rajamanoharan

et al. 2024; Bussmann et al. 2024).
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Scaling studies show that SAEs can recover thousands of human-legible features from large

LLMs when trained on diverse text and with careful engineering. Empirically, feature quality

improves smoothly with model size, dataset size, and dictionary width, which gives practical

guidance for allocating compute. Open-source tooling now makes it feasible to train and audit

SAEs, and tutorials demonstrate how to combine them with standard causal analyses such

as activation patching (Team 2024). SAE features are not only descriptive. They support

precise steering at inference time: one can compute “steering vectors” from contrastive data

and add them to activations to increase or decrease a behavior, or select specific SAE latents

that correspond to the behavior and modulate only those. These interventions can change style,

reduce hallucinations on some tasks, or amplify a targeted capability while preserving overall

fluency. Such experiments also act as mechanistic tests of whether a feature is causally involved

in the behavior of interest (Panickssery et al. 2023).

Two caveats are important. First, not every variable of interest is perfectly linear, some appear

to require small subspaces or exhibit context-dependent composition. Second, SAEs do not

necessarily produce a unique “canonical” set of atomic features. Different training runs or

larger dictionaries can split or refine existing latents while improving reconstruction. These are

reasons to pair SAEs with causal evaluations and to report sensitivity to training choices, rather

than reasons to discard the method (Engels et al. 2024).

2.1.3 Dynamic approach

To move beyond static snapshots of internal representations, we introduce two complementary

dynamic perspectives that reveal and quantify how geometry evolves across the network.

(i) Topological data analysis Topological Data Analysis (TDA) provides robust, scale-

aware descriptors of shape. Its core tool, persistent homology, records the birth and death of

connected components, cycles, and higher-dimensional cavities along a filtration {Kν}ν≥0 with

ν1 ≤ ν2 ⇒ Kν1 ⊆ Kν2 (e.g., the Vietoris–Rips filtration built by connecting points within radius

ν), see Figure 2.5. Zigzag persistence extends this framework to sequences where inclusions

may reverse, making it well-suited for representations that change over time or across network

layers and track the formation and destruction of topological features through the model and to

quantify their persistence statistics, yielding a concise characterization of the transformations

in high-dimensional space (Gardinazzi et al. 2024; Uchendu and Le 2024).

(ii) A particle-dynamics lens One can see the set of token representations at each layer as

a cloud of points that moves through the embedding space as the model processes the input.

Self-attention behaves like diffusion that mixes information across tokens, while the feed-forward

block behaves like a drift that nudges each token along learned directions. A compact summary

of the cloud at a given layer is the matrix of pairwise similarities between tokens, tracking this

summary through depth reveals how geometry changes across the network. In very wide models,

theory shows that these statistics become predictable and evolve according to low-dimensional

dynamics, which motivates treating depth as a discrete time axis and connects Transformers
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Figure 2.5: Topological data analysis methods [From: ICML-2025 Slide Deck by Gardinazzi et
al. ]

to continuous-depth formulations based on neural ordinary differential equations (Schoenholz

et al. 2016; R. T. Chen et al. 2018). This view also predicts a stable versus chaotic boundary: in

the stable regime nearby inputs become more similar across layers, while in the chaotic regime

small differences grow.

2.1.4 Geometric approach

We have deliberately focused our initial studies on the geometric perspective of interpretability,

and this remains an ongoing effort. In §2.2 we review in greater depth the relevant literature to

clarify what has been done and what remains open

A useful starting point is the Manifold Hypothesis: learned activations occupy structured,

low-dimensional subsets of the ambient space. Together with the Johnson–Lindenstrauss (JL)

lemma, which guarantees that pairwise distances among a finite set of points can be approx-

imately preserved under random projections to a much lower dimension, this motivates esti-

mating the intrinsic dimensionality (ID) of representation sets and, jointly, characterizing how

evenly those sets use the available directions in space, isotropy. ID summarizes the effective

degrees of freedom in the activations, while an isotropy index summarizes directional balance.

We start by talking about intrinsic dimensionality.

Intrinsic dimensionality

Formally, a point cloud H = {hi}Ni=1 ⊂ RD has intrinsic dimension d if it lies on (or sufficiently

near) a d-dimensional manifold M ⊂ RD. Two complementary families of estimators are

common:

• Linear intrinsic dimensionality estimators

• Non-linear intrinsic dimensionality estimators
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We now briefly introduce both of them.

(A) Linear ID estimators. These estimators look only at the covariance spectrum of H. Two

widely used summaries are:

dPR = (trC)2

tr (C2)
and dτ = min{k :

∑k
j=1 λj/

∑D
j=1 λj ≥ τ},

where C is the sample covariance and λ1≥ . . .≥λD its eigenvalues. The first is the participation

ratio (effective rank), the second is the PCA “variance-explained at level τ” . These are easy to

compute and rotation invariant, but they only capture linear structure: curved manifolds with

broad spectra can have large dPR even when their nonlinear ID is small. In practice, we report

a linear ID side-by-side with a nonlinear estimator to separate spectral spread from manifold

dimension.

(B) Nonlinear, neighborhood-based ID estimators. These estimators use local geometry, typically

k-nearest-neighbor (kNN) distances and angles, and remain valid for curved manifolds. They

assume local homogeneity at the scale of the kth neighbor and are sensitive to the choice of k.

Below we detail the three estimators we will use: TwoNN, GRIDE, and a maximum-likelihood

kNN estimator; we also mention an angle-based alternative.

TwoNN (Two Nearest Neighbors) For each point hi, let ri,1 and ri,2 be the distances

to the first and second nearest neighbors and define the ratio µi = ri,2/ri,1. Under a locally

homogeneous Poisson model on a d-dimensional manifold, µi follows a Pareto distribution with

shape parameter d. TwoNN estimates d by fitting a straight line to the transformed empirical

CDF:

log
(
1− F̃ (µ(i))

)
= −d logµ(i) (no intercept),

often discarding the largest few percent of ratios to reduce boundary effects. TwoNN is fast,

scale-aware, and surprisingly robust for moderate d, with finite samples it tends to underestimate

high dimensions and therefore is best treated as a lower bound beyond d≈20. In applied work

one typically (a) repeats the estimate over several random subsamples (“decimation,” a proxy for

checking scale-invariance) and (b) reports a median and a bootstrap interval. This estimator

has been used to map layerwise ID profiles in deep networks and to connect the location of

“compression valleys” to generalization behavior (Facco et al. 2017; Ansuini et al. 2019).

GRIDE (Generalized Ratios ID Estimator) GRIDE extends TwoNN by using ratios of

generic neighbor orders, µ̇i = ri,n2/ri,n1 with 1 < n1 < n2. Under the same local Poisson

assumptions, closed-form likelihoods are available for µ̇i, which gives a maximum-likelihood

estimate of d and exact confidence intervals. Using higher-order neighbors makes the estimator

less sensitive to small-scale noise and allows a principled exploration of how ID changes with

neighborhood scale, without throwing away most points as in decimation. In practice we scan a

small grid of (n1, n2), check stability across scales, and report the value on the earliest plateau

(Denti et al. 2022).
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MLE kNN estimator (Levina–Bickel) A classic alternative uses the log-ratios of the first

k neighbor distances. For each point:

d̂−1
i =

1

k − 1

k−1∑
j=1

log
ri,k
ri,j

, d̂ =
1

N

N∑
i=1

d̂i.

Small k reduces curvature bias but increases variance; k in the range 10−20 is common, with

sensitivity checks across a grid. Weighted variants and bias corrections exist, and asymptotic

standard errors can be derived from the MLE. We use this estimator as a secondary check on

TwoNN/GRIDE, not as a sole source (Levina and Bickel 2004).

Angle+norm estimator (DANCo) DANCo combines two statistics whose distributions

depend on d: the concentration of inter-point angles and the distribution of neighbor radii. It

fits d by matching both. DANCo is comparatively robust to curvature and moderate density

variation but is more computationally demanding and can be sensitive to high-dimensional noise

without careful neighbor selection. We use it to corroborate results on difficult layers or when

spectra are very flat. (Ceruti et al. 2012)

Local ID (LID) In some analyses the focus is on the local complexity around a point or

within a class-conditioned subset. LID formalizes the tail rate of the distance distribution and

can be estimated from kNN distances. Local estimates help explain heterogeneity across tokens

or labels and are useful for detection tasks, but they are noisier and more sensitive to sampling

(Houle et al. 2018 ) .

Because linear spectra and nonlinear neighborhood geometry answer different questions, we

think it is important to report both. Linear ID (participation ratio and variance-explained

counts) tracks how spread out variance is across directions, while TwoNN/GRIDE/DANCo

quantify manifold degrees of freedom. Recent analyses emphasize that the two can diverge

systematically during pretraining and fine-tuning, with “linear” dimensionality reflecting su-

perficial or form-like factors and “nonlinear” ID tracking semantic or task-useful complexity

(Ansuini et al. 2019).

Isotropy

We now introduce the concept of isotropy.

Let C = 1
N

∑
i(hi − h̄)(hi − h̄)⊤ be the covariance of centered, optionally length-normalized

vectors. A representation set is second-order isotropic when C ∝ I, i.e., variance is uniformly

distributed across directions (see Figure 2.6). Contextual embeddings in popular LMs are

typically anisotropic: tokens occupy a narrow cone, which inflates average cosines and can

harm similarity search unless post-processed (Ethayarajh 2019a; Mu et al. 2017). The metric

IsoScore (Rudman et al. 2022a) quantifies how uniformly a point cloud uses the ambient space

by comparing the spectrum of C to the spectrum of an ideal isotropic cloud. It is designed

to be rotation, mean, and scale invariant, and to remain stable on mini-batches. In contrast

18



to earlier proxies such as average random cosine or the partition score (which can be brittle

and non-invariant), IsoScore behaves predictably under controlled tests and correlates with true

space utilization. We standardize on IsoScore as our primary isotropy measure and report it

together with linear ID so that “how many directions” and “how evenly those directions are

used” are both visible.

Figure 2.6: Isotropy in R1,2,3.

2.2 Representation space in Language Models: what we already

know

As already introduced, two global descriptors are particularly informative for understanding

how embedding spaces are organized in large language models (LLMs): the intrinsic dimen-

sionality (ID) of activation sets and their isotropy. Taken together, they provide model-agnostic

summaries of compression, specialization, and the balance between shared and cluster-specific

structure. These descriptors were first applied to latent spaces in computer vision and molec-

ular modeling, and more recently to textual embeddings. Most studies analyze sentence-level

representations extracted layer by layer, typically via a designated sentence token or by mean-

pooling token vectors. In what follows, we review early work that employs these descriptors for

language models and summarize the main findings.

Isotropy: what we know Early analyses showed that contextual embeddings produced by

ELMo, BERT, and GPT-2 are strongly anisotropic, concentrating in narrow cones, this degrades

cosine-based similarity and motivates debiasing or re-centering before evaluation (Ethayarajh

2019b). Follow-up work refined this picture. Cai et al. (Cai et al. 2021) showed that condition-

ing on senses or clusters yields more balanced local geometry than global summaries suggest.

IsoScore was introduced as a rotation and scale robust measure of uniform space utilization,

addressing weaknesses of average random cosine and partition scores (Rudman et al. 2022b).

Importantly, isotropy relates to linguistic use cases: post-processing that increases isotropy im-

proves unsupervised sentence representations and semantic textual similarity (B. Li et al. 2020),

while in multilingual settings both the extent and location of anisotropy matter for cross-lingual

alignment and transfer, and can change with fine-tuning (Rajaee and Pilehvar 2021). Recent

studies debate whether anisotropy is inherent to transformers or contingent on training choices
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(Xie et al. 2024; Machina et al. 2024), this nuance is relevant when we interpret geometry shifts

induced by domain adaptation or instruction tuning.

Intrinsic dimensionality: what we know Across architectures and domains, trained net-

works tend to produce activations with ID far below the ambient width, and ID varies systemati-

cally with depth. In vision and text models alike, layerwise ID often follows an expand–compress

trajectory (Figure 2.7): an early rise associated with feature mixing, followed by a compression

valley and, sometimes, a late consolidation phase (Ansuini et al. 2019; Valeriani et al. 2023).

For LLMs, Cheng et al (Cheng et al. 2024) reported the emergence of a high-dimensional “ab-

straction” phase that correlates with improved linguistic capability under continued pretraining.

Beyond description, ID has practical value: local ID of activations can distinguish human from

model-generated text in a model-agnostic fashion (Tulchinskii et al. 2023), and it correlates with

factuality during generation, with lower local ID neighborhoods associated with more truthful

answers (Yin et al. 2024). ID has also explained why fine-tuning is effective in low-data regimes:

many NLP tasks lie in low-dimensional subspaces of the parameter space, which helps account

for the success of parameter-efficient adaptation (Aghajanyan et al. 2021).

Implications for linguistic analysis Geometry helps answer linguistic questions without

committing to a specific probe architecture. Isotropy affects cosine-based lexical and sentence

semantics, so centering and debiasing become part of fair evaluation (Ethayarajh 2019b; B. Li

et al. 2020). Layerwise ID trajectories align with the intuition that lower layers encode local

form while mid layers consolidate abstract structure (Ansuini et al. 2019; Valeriani et al. 2023).

In multilingual models, geometry differences across languages can be quantified and, in some

cases, aligned, which supports stronger zero-shot transfer (Rajaee and Pilehvar 2021). Finally,

local ID during generation offers a complementary confidence signal for question answering and

summarization (Yin et al. 2024), connecting representational complexity to observable behavior.
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Figure 2.7: Schematic layerwise intrinsic-dimension (ID) profile in encoders.

20



Chapter 3

Preliminary results

This chapter presents the work, both published and unpublished, developed this year as part

of a broader effort to bring Transformer models closer to how human learning. Guided by

human-inspired methods, including the use of eye-tracking data, we investigate the geometry

of representations in neural language models. Using the metrics introduced in §2.1.4, we study

how embedding spaces evolve and reorganize during training and adaptation. We describe three

studies. In the first, we analyze a pretrained model, comparing its embeddings before and after

multiple fine-tuning procedures and under alternative pretraining objectives. In the second, we

take a cross-lingual view, examining manifolds for linguistic classes in Italian and English and

showing that these classes differ systematically under geometric descriptors. In the third, we

examine how representational geometry emerges during pretraining by training models on the

same corpus in different orders and tracking how these permutations shape the trajectories of

the learned spaces.

3.0.1 Study 1: From Human Reading to NLM Understanding: Evaluating

the Role of Eye-Tracking Data in Encoder-Based Models

This study (Dini, Domenichelli, Brunato, and Dell’Orletta 2025) investigates whether injecting

eye-tracking (ET) information into an encoder-only language model changes (i) downstream task

performance, (ii) the alignment between model attention and human gaze, and (iii) the geometry

of the model’s embedding space. Using RoBERTa-base, we compare four ET–injection strategies

(intermediate fine-tuning with several “how many layers to unfreeze” variants, LoRA adapters,

interleaved multi-task learning, and multi-task learning with silver ET labels) against strong

baselines. We report that ET supervision preserves or only marginally affects task performance,

improves attention–gaze correlation, and compresses the representation space (lower intrinsic

dimensionality and lower isotropy). Before presenting these results, we introduce the concept

of eye-tracking data.

Eye-tracking data Eye tracking measures fixations and saccades during reading (Figure

3.1), offering behavioural signals that correlate with linguistic difficulty and processing dynam-

ics (Demberg and Keller 2008). While high-quality data have traditionally required laboratory
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eye-trackers, recent work demonstrates practical gaze estimation with commodity cameras (Pa-

poutsaki 2015), and dedicated devices are becoming more accessible (San Agustin et al. 2010;

D. Li et al. 2006). Several publicly available, annotated corpora facilitate NLP research with

gaze features, including the Dundee Corpus Kennedy et al. 2013, GECO (Cop et al. 2017),

ZuCo (Hollenstein et al. 2018), and MECO L1 (Siegelman et al. 2022).

Figure 3.1: Eye-tracking data fixations.

Experimental settings

Data

• Eye-tracking (ET): English GECO corpus, 12 readers after filtering, five word-level

gaze features (first fixation duration, gaze duration, first-run #fixations, total reading

time, total #fixations), scaled to [0, 100]. Split: 80% train, 20% test, consistent across

users.

• Downstream tasks: GLUE (CoLA, SST-2, MNLI, QNLI, RTE, WNLI, QQP, MRPC,

STS-B) and a human complexity judgement dataset (comp). Task metrics follow official

choices (e.g., MCC for CoLA, accuracy for NLI, Spearman/Pearson for STS-B)

• Out-of-domain geometry analysis: English UD-EWT sentences length-matched to

GECO for sentence-embedding geometry analyses.

Model and training Model used is RoBERTa-base (12 layers, d = 768). ET prediction is

framed as multi-label token-level regression, assigning ET features to the first sub-token of each

word, downstream tasks are sentence-level classification or regression. Common hyperparame-

ters include AdamW, lr 1×10−5, warmup 0.06, weight decay 0.1, and 10 epochs (task-dependent

exceptions for large GLUE datasets and for LoRA runs).

ET-injection strategies

1. Intermediate fine-tuning (INT): first fine-tune on ET, then on the downstream task.

Variants: int-full (full model), int-last3, int-last2, int-clf (progressively fewer

layers updated in the second step).

2. LoRA: ET fine-tuning, then downstream fine-tuning with low-rank adapters; adapters

are moved back onto the ET-specialized model for evaluation.
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3. Multi-task, interleaved (MT-IL): alternate batches between ET and downstream

data, balancing dataset sizes by repeating ET batches.

4. Multi-task with silver labels (MT-SILV): generate ET pseudo-labels on the down-

stream set using an ET-specialized model and train jointly on task labels and silver ET

features.

Representation space analyses

Sentence embeddings are obtained by mean pooling token representations, geometry is measured

per layer on GECO and on UD-EWT (out-of-domain), enabling within-model, across-layer

comparisons.

Metrics Two complementary descriptors are used.

• Linear intrinsic dimensionality (Linear ID): the number of effectively used linear

directions in the embedding cloud (see §2.1.4).

• Isotropy (IsoScore): a bounded, rotation-invariant index of how uniformly the point

cloud uses the ambient space (see §2.1.4).

Results

We now briefly show the results of our work.

i) Downstream performance is preserved. Models trained with ET injection retain competitive

accuracy. In particular, INT-FULL achieves an average of 0.82 versus 0.83 for DST-

ONLY, with most task scores within 0.02 points of the baseline. Multi-task strategies

(MT-IL, MT-SILV) also remain robust, while partial unfreezing (INT-LAST3/2/CLF)

and LoRA show larger drops (see Table 3.1).

ii) ET supervision improves attention–gaze alignment. Fine-tuning on ET features increases

correlation between model attention and human gaze for all readers. The effect emerges

from mid layers onward, with stronger alignment in upper layers compared to the baseline

(see Table 3.2).

iii) Alignment persists after task fine-tuning. On the last layer, ET-injected models consis-

tently outperform DST-ONLY (e.g., INT-CLF reaches 0.29 correlation vs. 0.08 for DST-

ONLY). Partial unfreezing strategies preserve the highest correlations, while INT-FULL

erodes them more (see Table 3.3) .

iv) Representation geometry is compressed. Compared to RoBERTa-base (Linear ID = 297,

IsoScore = 28.69×10−3), ET-injected models show lower dimensionality and reduced

isotropy. For example, EYE-ONLY yields Linear ID = 160 and IsoScore = 4.97×10−3

(see Tables 3.4a and 3.4b).

v) INT-FULL balances accuracy and compression. This strategy achieves strong task perfor-

mance while producing the lowest or near-lowest geometry metrics (average Linear ID =
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117; IsoScore = 4.09×10−3) across tasks.

vi) Findings replicate out-of-domain. On English UD-EWT, ET-injected models again show

reduced Linear ID and isotropy compared to baselines, confirming that compression effects

generalize beyond the training corpus.

vii) Isotropy and dimensionality correlate. Across models and tasks, isotropy and Linear ID

display a strong positive Spearman correlation (ρ ≈ 0.75 on GECO, similar on UD-EWT),

indicating the metrics co-vary.

viii) Trade-offs across strategies. Partial fine-tuning (INT-LAST3/2/CLF) yields the strongest

attention–gaze alignment after downstream training, while INT-FULL compresses geom-

etry most. Both remain broadly competitive in downstream accuracy (see Tables 3.1 to

3.3).

Downstream task

Fine-tuning cola comp mnli-m mnli-mm mrpc qnli qqp rte sst-2 stsb wnli avg

int-full 0.56 0.90 0.88 0.88 0.90 0.93 0.90 0.70 0.92 0.91 0.56 0.82

int-last3 0.25 0.88 0.70 0.71 0.80 0.82 0.81 0.54 0.88 0.81 0.56 0.71

int-last2 0.15 0.85 0.62 0.64 0.77 0.75 0.77 0.53 0.86 0.74 0.56 0.66

int-clf 0.00 0.70 0.43 0.44 0.75 0.61 0.61 0.50 0.76 0.12 0.56 0.50

lora 0.41 0.87 0.85 0.85 0.80 0.91 0.86 0.49 0.93 0.88 0.55 0.76

mt-il 0.53 0.91 0.83 0.83 0.90 0.92 0.88 0.75 0.93 0.90 0.52 0.81

mt-silv 0.51 0.91 0.88 0.87 0.88 0.93 0.90 0.60 0.93 0.91 0.50 0.76

dst-only 0.60 0.91 0.88 0.88 0.90 0.93 0.90 0.77 0.93 0.90 0.56 0.83

Table 3.1: Performance on downstream tasks for different eye-tracking (ET) injection strate-
gies. Shaded cells ( ) are within 0.02 of the dst-only score for that task. For MNLI we
report Matched (m) and MisMatched (mm) separately. Metrics follow GLUE conventions (e.g.,
Matthews corr. for cola, accuracy for mnli, qnli, rte, wnli, sst-2; combined F1/Acc for
mrpc and qqp; Spearman/Pearson for stsb); comp is sentence-complexity prediction (Spear-
man).

Model Layer

Model 1 2 3 4 5 6 7 8 9 10 11 12 avg

eye-only 0.23 0.20 0.26 0.23 0.19 0.22 0.25 0.25 0.32 0.27 0.24 0.29 0.25

base 0.25 0.21 0.28 0.25 0.21 0.17 0.16 0.19 0.18 0.05 0.08 0.12 0.18

Table 3.2: Spearman correlation coefficients between model attention and user attention for
the model fine-tuned on predicting user ET features (eye-only) and RoBERTa-base (base).
The scores are averaged across all users. Differently from eye-only, only half of users lead to
significant correlations with base; the others were excluded from the mean.

3.0.2 Study 2: The Role of Eye-Tracking Data in Encoder-Based Models:

an In-depth Linguistic Analysis

This study (Domenichelli et al. 2025) explores how injecting human eye–tracking (ET) signals

into a multilingual encoder changes (i) the model’s attention allocation across linguistically

24



Attention correlation (last layer)

Fine-tuning cola comp mnli mrpc qnli qqp rte sst-2 stsb wnli avg

int-full 0.19 0.35 0.05 0.16 0.06 0.08 0.12 0.04 0.09 0.18 0.13
int-last3 0.29 0.28 0.24 0.31 0.16 0.29 0.26 0.21 0.20 0.23 0.25
int-last2 0.28 0.26 0.19 0.28 0.30 0.24 0.28 0.29 0.31 0.28 0.27
int-clf 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29
lora 0.27 0.22 0.13 0.20 0.13 0.20 0.32 0.16 0.21 0.30 0.21
mt-il 0.26 0.23 0.22 0.27 0.16 0.21 0.27 0.20 0.27 0.28 0.24
mt-silv 0.25 0.11 0.28 0.15 0.31 0.23 0.33 0.31 0.14 0.27 0.24

dst-only 0.06 0.08 0.05 0.01 0.07 0.03 0.02 0.07 0.11 0.12 0.08

Table 3.3: Correlations between human attention (TRT ) and model attention on the last layer
for each injection strategy. The scores are averaged across all readers. Highlighted cells indicate
that the correlation score of the ET injected model exceeds that of dst-only by at least 0.02
points. Bold scores are the highest correlation coefficients: those exceeding 0.27, which is 0.02
points lower than the last-layer correlation of eye-only.

Linear ID

F-T cola comp mnli mrpc qnli qqp rte sst-2 stsb wnli avg

int-full 127 89 191 185 242 11 161 4 32 127 117

int-last3 173 135 194 162 148 154 154 92 142 154 151

int-last2 162 148 166 160 160 153 157 142 158 158 157

int-clf 160 160 160 160 160 160 160 160 160 160 160

lora 184 144 310 158 279 256 166 202 146 163 201

mt-il 232 154 110 179 228 88 155 251 228 152 178

mt-silv 249 209 233 268 251 207 206 221 264 209 232

dst-only 289 249 249 249 249 3 278 4 249 16 186

base 297 –

eye-only 160 –

(a) Layer 12 Linear ID values averaged over all users
in the GECO dataset. Entries in bold mark the lowest
value for each task.

IsoScore ×103

F-T cola comp mnli mrpc qnli qqp rte sst-2 stsb wnli avg

int-full 0.74 1.19 2.75 15.59 3.03 0.35 5.95 0.88 0.71 9.74 4.09

int-last3 7.92 2.96 7.40 6.79 2.10 3.53 4.36 0.69 3.46 5.00 4.42

int-last2 5.89 3.78 7.45 5.05 5.58 4.08 4.35 3.24 5.77 4.69 4.99

int-clf 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99

lora 11.26 5.36 30.23 8.47 11.34 28.62 6.01 9.99 2.72 5.27 11.93

mt-il 4.34 5.02 1.39 2.71 4.06 1.07 2.52 5.83 4.66 3.69 3.53

mt-silv 17.38 10.76 8.28 12.00 11.89 6.57 10.14 11.26 21.56 11.97 12.18

dst-only 6.53 35.94 4.58 15.08 4.69 0.40 28.03 1.17 11.14 0.27 10.78

base 28.69 –

eye-only 4.97 –

(b) Layer 12 IsoScore values (×103) averaged over all
users in the GECO dataset. Entries in bold mark the
lowest value for each task.

defined categories and (ii) the geometry of token representations. Experiments cover Italian

and English and quantify both attention–gaze alignment and representation–space shifts. ET

fine-tuning increases correlation between model attention and human reading time, reallocates

attention toward linguistically informative tokens, and compresses the embedding space in upper

layers, with effects replicated across languages.

Experimental settings

Data

• Eye-tracking (ET): MECO L1 subsets for Italian (9 readers) and English (25 readers

reading a shared subset of sentences). Five word-level targets capture early, late, and

contextual reading signals: First Fixation Duration, Gaze Duration, Total Reading Time,

First-run #Fixations, and Total #Fixations.

• Linguistic annotations for analysis: UD Italian-ISDT and UD English-EWT training

sets provide PoS tags, head–dependent distances, and sentence positions used to define

linguistic classes for attention and geometry analyses.

Model and training We employed a multilingual encoder XLM-RoBERTa-base (12 lay-

ers). ET prediction is framed as multi-target token-level regression, with labels attached to the

first sub-token of each word. For each participant, one reader-specific model is fine-tuned for 50

epochs with learning rate 5×10−5, weight decay 0.01, warm-up ratio 0.05; hyperparameters are
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selected by 5-fold CV. Unlike aggregation across readers, training is individualized : one model

per reader to respect inter-subject variability in reading behavior. This design is central to the

subsequent correlation and geometry analyses.

Attention–gaze alignment For each layer, the attention received by each word when com-

puting the sentence BOS token <s> is correlated (Spearman) with the reader’s Total Reading

Time, yielding layer-wise attention–gaze alignment curves before and after ET fine-tuning. At-

tention is L1-normalized per sentence (excluding BOS/EOS). For each class (POS, word length

in characters, sentence position, head–dependent distance), the percentage change in average

received attention is measured after vs. before ET fine-tuning.

Representation-space analyses

Metrics Two complementary geometry descriptors are computed per layer on UD sentences

(first sub-tokens):

• Linear intrinsic dimensionality (Linear ID): the number of effectively used linear

directions in the embedding cloud (see §2.1.4).

• Isotropy (IsoScore): a bounded, rotation-invariant index of how uniformly the point

cloud uses the ambient space (see §2.1.4).

Significance of pre-/post-ET differences is tested with Wilcoxon signed-rank tests.

Token representations are taken at every layer for UD sentences, class-conditioned analyses

compute IsoScore and Linear-ID within each linguistic group, while global curves summa-

rize layer-wise trajectories across the whole dataset. This is reported separately for Italian

and replicated for English. We report (i) global geometry over layers before/after ET; (ii)

POS-conditioned manifolds; and (iii) geometry grouped by head–dependent distance.

Results

i) Attention–gaze alignment Spearman correlations between model attention and human

Total Reading Time increase after ET fine-tuning, with the largest gains in deeper layers

for both Italian (see Figure 3.2 ).

ii) Attention reallocation by linguistic factors. Single-character tokens lose attention;

short words (2–3 chars) gain attention in several middle and upper layers ( Figure 3.3 left).

Punctuation is consistently down-weighted, while some function words (ADP/DET/AUX)

gain attention, Italian shows notable increases for CCONJ (Figure 3.3 right). Earlier

sentence positions gain attention on average, with layer-specific boosts to the first token in

layers 2 and 11 (Figure 3.4 left). Tokens closer to their syntactic head, especially when the

head follows, receive more attention after ET (see Figure 3.4 right).

iii) Global geometry. After ET, upper layers become markedly more anisotropic and

lower-dimensional: IsoScore begins to fall from layer 4 rather than only in the very top
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layers, and Linear-ID drops from ∼ 650 to < 100 by layer 12 (Italian, similar trends for

English). Differences are significant by Wilcoxon tests (Figure 3.5).

iv) POS-conditioned geometry. Before ET, content words (NOUN/VERB/PROPN) oc-

cupy higher-ID, more isotropic regions than function words and punctuation. ET com-

presses all POS categories in the upper stack, largely reducing the content–function gap

above layer ∼ 6 (Figures 3.6 - 3.7).

v) Syntactic-distance geometry. Right dependents show higher ID and isotropy than left

dependents already before ET, ET applies a near-uniform upper-layer compression from

layer 8 while preserving the lower-layer left–right asymmetry (Figures 3.8 - 3.9).

vi)

Figure 3.2: Correlation between model attention and human attention (p-value < 0.05).

Figure 3.3: Attention shift for word length and for UD Parts of Speech.
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Figure 3.4: Attention shift for word position in sentence and distance from syntactic head.

Figure 3.5: IsoScore (left) and Linear intrinsic dimensionality (right) of word embeddings from
all model layers, before and after fine-tuning, averaged across users.

Figure 3.6: Isotropy before (left) and after (right) fine-tuning, shown for the 13 most frequent
POS classes.

3.0.3 Study 3: Curriculum learning shapes layers geometry

This study examines how simple curriculum schedules during pretraining affect both down-

stream performance and the geometry of internal representations in a RoBERTa-medium

encoder. We order the same pretraining sentences by sentence-level difficulty proxies (length

and two Italian readability indices) and compare forward (easy→hard), inverted (hard→easy),

and random orderings. At regular checkpoints we (i) fine-tune on three tasks (complexity pre-

diction, sentiment, POS tagging) under fixed budgets and (ii) monitor geometry on a held-out

28



Figure 3.7: Linear-ID before (left) and after (right) fine- tuning, shown for the 13 most frequent
POS classes.

Figure 3.8: Isotropy before (left) and after (right) fine-tuning, shown for syntax head distance
(up to 7 tokens distance).

corpus using IsoScore, Linear ID and TwoNN (see §2.1.4). Before presenting our experiments,

we introduce the notion of curriculum learning and its relevance for language models training.

Curriculum learning (CL) organises training data. We choose to pursue a ”pedagogically

inspired curriculum learning”, organising data from easier to harder examples, mimicking hu-

man pedagogy and often yielding faster convergence and better generalisation (Bengio et al.

2009). Although large language models are typically trained on randomly ordered corpora, CL

requires defining a difficulty ranking and a pacing schedule, both nontrivial design choices. In

neural language modelling, CL has been applied to data-to-text generation (Chang et al. 2021),

intent detection (Gong et al. 2021), and even pretraining regimes (Nagatsuka et al. 2021), where

staged exposure improved stability and downstream performance. In our setting, CL provides

Figure 3.9: Linear-ID before (left) and after (right) fine- tuning, shown for syntax head distance
(up to 7 tokens dis- tance).
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a controlled way to probe how the latent geometry evolves as ”complexity” is introduced pro-

gressively.

Experimental settings

Data We pretrain on a single Wikipedia corpus (identical across schedules) and reserve a

held-out set for geometry tracking. Downstream evaluation uses three tasks: (i) sentence com-

plexity regression (reporting MAE and Spearman ρ), (ii) sentiment classification (accuracy),

and (iii) POS tagging (F1 and accuracy). These tasks are specifically chosen, since each targets

a specific type of linguistic knowledge

Model and training Backbone: RoBERTa-medium (8-layer encoder, masked-LM objec-

tive). We train up to 120k updates with stage boundaries at 40k and 80k for curricula, check-

points are evaluated on all downstream tasks under fixed fine-tuning budgets. For geometry, we

extract the mean pooled representation of each sentence from all layers and at each checkpoint.

Curricula Curriculum orderings are:

• sentence length, the length of a sentence in tokens.

• Gulpease index (Lucisano, Piemontese, et al. 1988) a readability metric based on raw

text features

• Read – IT (Dell’Orletta et al. 2011), a readability metrics that combines traditional raw

text features with lexical, morpho-syntactic and syntactic information.

For each difficulty signal we instantiate two schedules:

• Forward (easy→hard): examples sorted from simpler to harder.

• Inverted (hard→easy): reverse order.

A uniform random order is the baseline.

Representation space analyses

Extraction protocol At each checkpoint we compute sentence-conditioned token embeddings

from all layers and summarize geometry on the held-out corpus.

Metrics. We track three metrics, two linear and one nonlinear :

• IsoScore (see §2.1.4)

• Linear ID (see §2.1.4)

• TwoNN (see §2.1.4) nearest-neighbour intrinsic dimensionality (lower ⇒ fewer effective

degrees of freedom).

These are computed on the same data and protocol across schedules to enable direct comparison.

30



First results

Although our analysis is still preliminary, the evidence so far suggests that curriculum schedules

primarily affect the convergence of the learning curve rather than the final level of performance.

Across all tasks, end accuracy under curriculum training is essentially indistinguishable from

the random-ordering baseline (Figure 3.10).

By contrast, the representation geometry differs markedly between curriculum-trained and ran-

domly trained models (Figure 3.11). For linear geometry diagnostics, we observe two clear

regimes: curriculum runs move more quickly toward a compact and well-spread configuration,

whereas random ordering follows a slower, smoother trajectory. The small spikes in the curves

align with stage boundaries in the curriculum, as expected when the distribution of training

examples shifts. Notably, these trajectories diverge from the very first checkpoints.

For the neighborhood-based intrinsic-dimensionality estimator (TwoNN), differences between

curriculum and random training are more subtle. This contrast indicates that linear and

non-linear measures capture complementary aspects of the representation space, and that data

ordering can reshape geometry even when end-task accuracy remains unchanged.

Figure 3.10: Performance scores (accuracy, F1, and Spearman correlation) on sentiment anal-
ysis, POS tagging and complexity. Many seeds were used so results are averaged on each
checkpoint.

31



Figure 3.11: Geometric scores (Linear ID, IsoScore and TwoNN) at last over checkpoints.
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