

Shaping Representation Space: Geometric Diagnostics in Transformers

Lucia Domenichelli^{1,2}

Introduction to the representation space of LLMs

- High-dimensional data. Embeddings form curved, twisted hypersurfaces with loops, pockets and bottlenecks.
- Narrow-Cone Hypothesis (Ethayarajh, 2019). Embeddings occupy a tight cone—highly anisotropic, not uniformly spread.
- Manifold Hypothesis (Clayton, 2015). Although embedded in high D, data lie on a much lower-dimensional manifold.

Research questions

(i) Linear-ID (99%): LinearID_{0.99} = min $\{k : \frac{\sum_{i=1}^{k} \lambda_i}{\sum_{j=1}^{D} \lambda_j} \ge 0.99\}$

(ii) IsoScore: $\tilde{\lambda}_i = \lambda_i \frac{\sqrt{D}}{\|\boldsymbol{\lambda}\|_2}$, IsoScore = $1 - \frac{\|\tilde{\boldsymbol{\lambda}} - \mathbf{1}\|_2}{\sqrt{2(D - \sqrt{D})}}$

Eigenvalues $\lambda_1 \ge ... \ge \lambda_D$ are taken from the covariance of centred embeddings.

What happens during pre-training?

Curriculum learning Over checkpoints

What happens after fine-tuning?

Eye-tracking English

Figure 3: IsoScore and Linear-ID across layers on diverse fine-tuning tasks.

What happens to sub-spaces?

Part-of-speech

Over layers

Figure 2: IsoScore and Linear-ID across checkpoint (top) and at the final checkpoint (bottom) for BERT-medium.

Italian

Figure 4: IsoScore and Linear-ID across layers for baseline XLM-RoBERTa and eye-tracking-fine-tuned model.

Head distance

IsoScore and Linear-ID across layers for POS and head-dependent distance subspaces.