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Introduction to the representation space of LLMs

•High-dimensional data. Embeddings form curved, twisted hy-
persurfaces with loops, pockets and bottlenecks.

• Narrow-Cone Hypothesis (Ethayarajh, 2019). Embeddings oc-
cupy a tight cone—highly anisotropic, not uniformly spread.

•Manifold Hypothesis (Clayton, 2015). Although embedded in
high D, data lie on a much lower-dimensional manifold.

Research questions
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Eigenvalues λ1≥ . . .≥λD are taken from the covariance of centred
embeddings.

What happens during pre-training?

Curriculum learning
Over checkpoints
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Figure 2: IsoScore and Linear-ID across checkpoint (top) and at the final
checkpoint (bottom) for BERT-medium.

What happens after fine-tuning?
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Figure 3: IsoScore and Linear-ID across layers on diverse fine-tuning tasks.
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Figure 4: IsoScore and Linear-ID across layers for baseline XLM-RoBERTa
and eye-tracking-fine-tuned model.

What happens to sub-spaces?

Part-of-speech

Head distance

Figure 5: IsoScore and Linear-ID across layers for POS and
head–dependent distance subspaces.
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