

Investigating Representation Geometry In Neural Language Models

Lucia Domenichelli - National PhD in Artificial Intelligence

TABLE OF CONTENTS

01

PhD project overview

03

What we have done

02

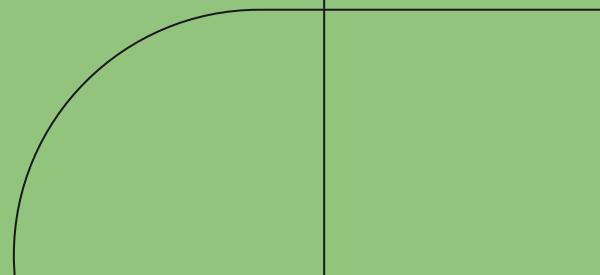
State of the Art

04

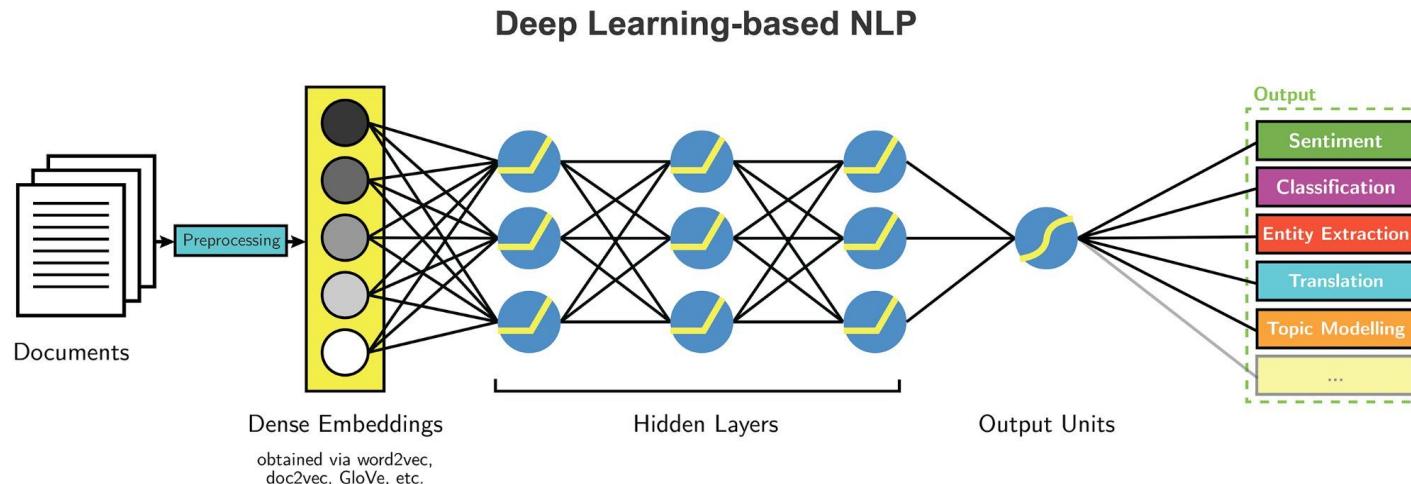
Ongoing work

1

■ PhD project overview

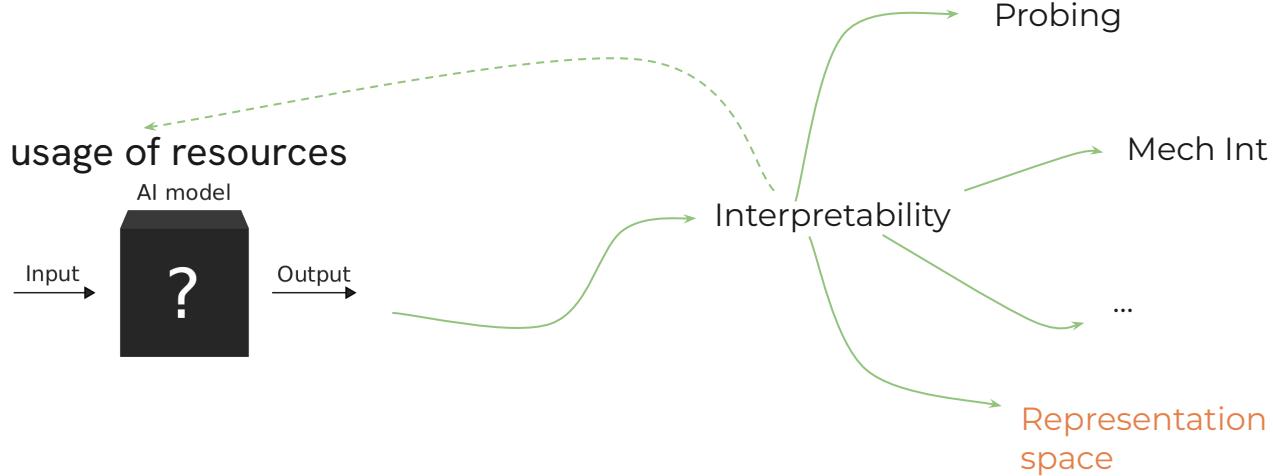


Some background...



Problems

- ❑ Efficiency and usage of resources
- ❑ Black boxes



Research questions ?

- ❑ How does representation geometry form and evolve across layers, training objectives, model sizes, and curricula, and can early-stage geometry predict eventual performance or learning speed?
- ❑ How do adaptation choices, such as fine-tuning strategies reshape geometry? Are these changes durable or task-specific, and do they translate into accuracy gains?
- ❑ Do geometric properties reliably encode and distinguish linguistic features across languages, and how do these properties correlate with (or predict changes in) downstream behavior?

Research questions ?

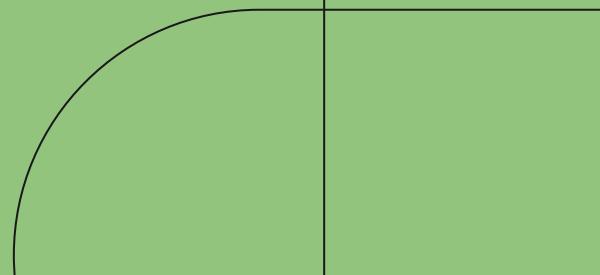
- ❑ How does representation geometry form and evolve across layers, training objectives, model sizes, and curricula, and can early-stage geometry predict eventual performance or learning speed?
- ❑ How do adaptation choices, such as fine-tuning strategies reshape geometry? Are these changes durable or task-specific, and do they translate into accuracy gains?
- ❑ Do geometric properties reliably encode and distinguish linguistic features across languages, and how do these properties correlate with (or predict changes in) downstream behavior?

Why understand LLMs?

- ❑ They are everywhere
- ❑ Their training doesn't lend itself towards trust:
 - Unsupervised pretraining
 - Supervised finetuning
 - RLHF
- ❑ An understandable fear of hallucinations and malicious outputs.

2

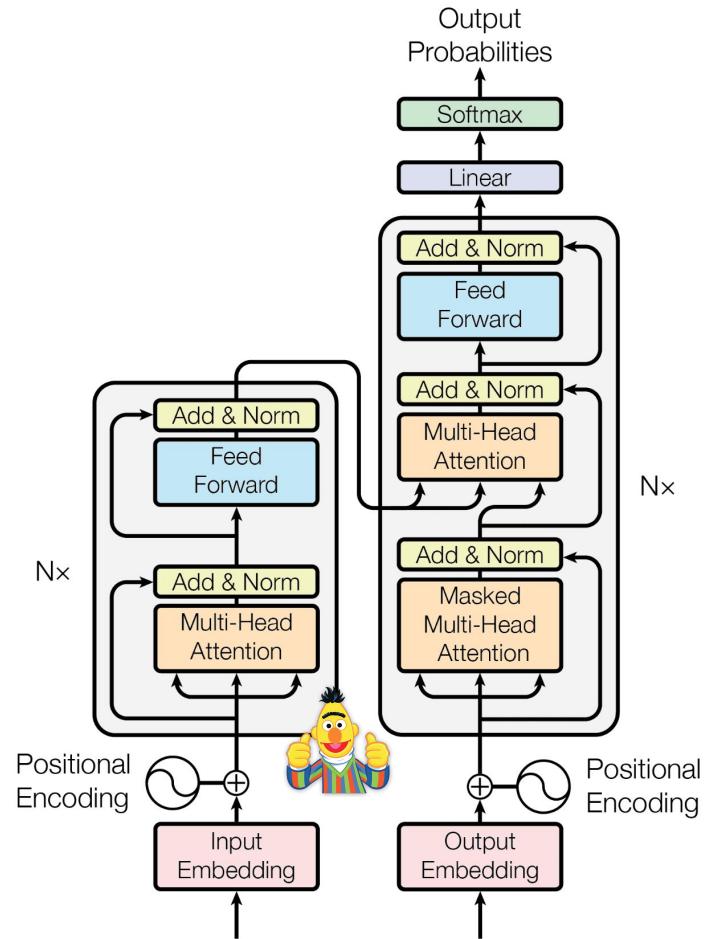
■ State of the Art



The Transformer model

- ❑ Transformers Models have become ubiquitous in Natural Language Processing
- ❑ Pretraining + finetuning
- ❑ Still the backbone!

Vaswani, Ashish, et al. "Attention is all you need."
Advances in neural information processing systems 30 (2017).

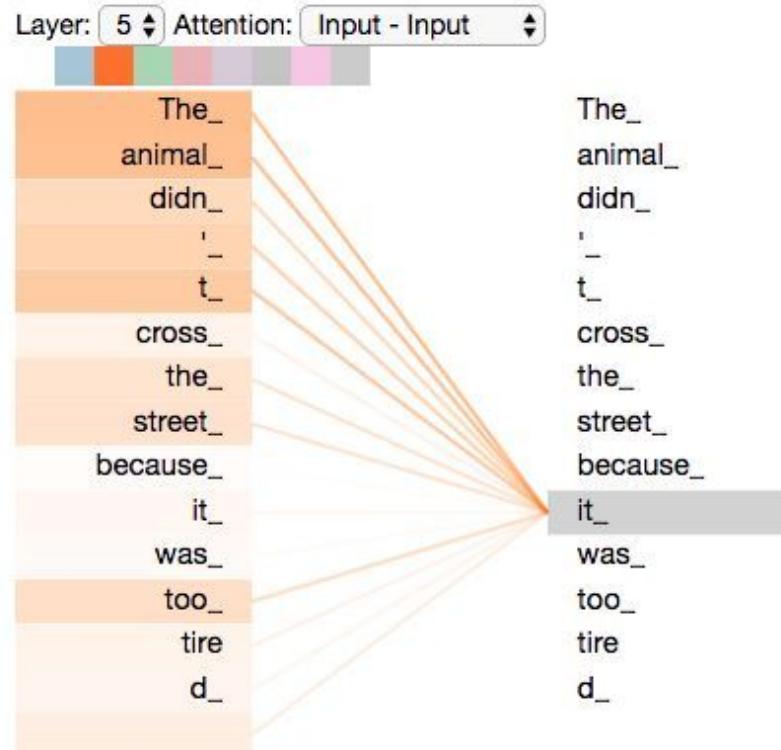


Attention is all you need!

- Attention is the method that allows the model to "attend" to different positions of the input sequence to compute a representation of that sequence.

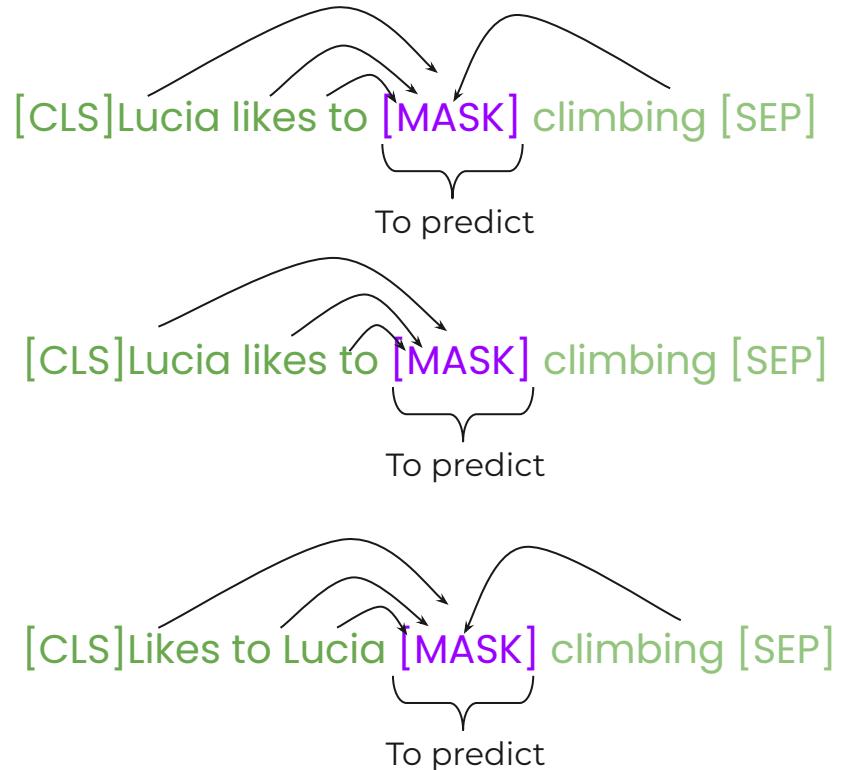
$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

Vaswani, Ashish, et al. "Attention is all you need."
Advances in neural information processing systems 30 (2017).



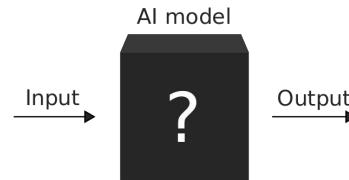
Pretraining

- ❑ Masked language modeling (Encoders)
- ❑ Causal language modeling (Decoders)
- ❑ Denoising autoencoders (Encoder+decoder)



2.1

■ Interpretability



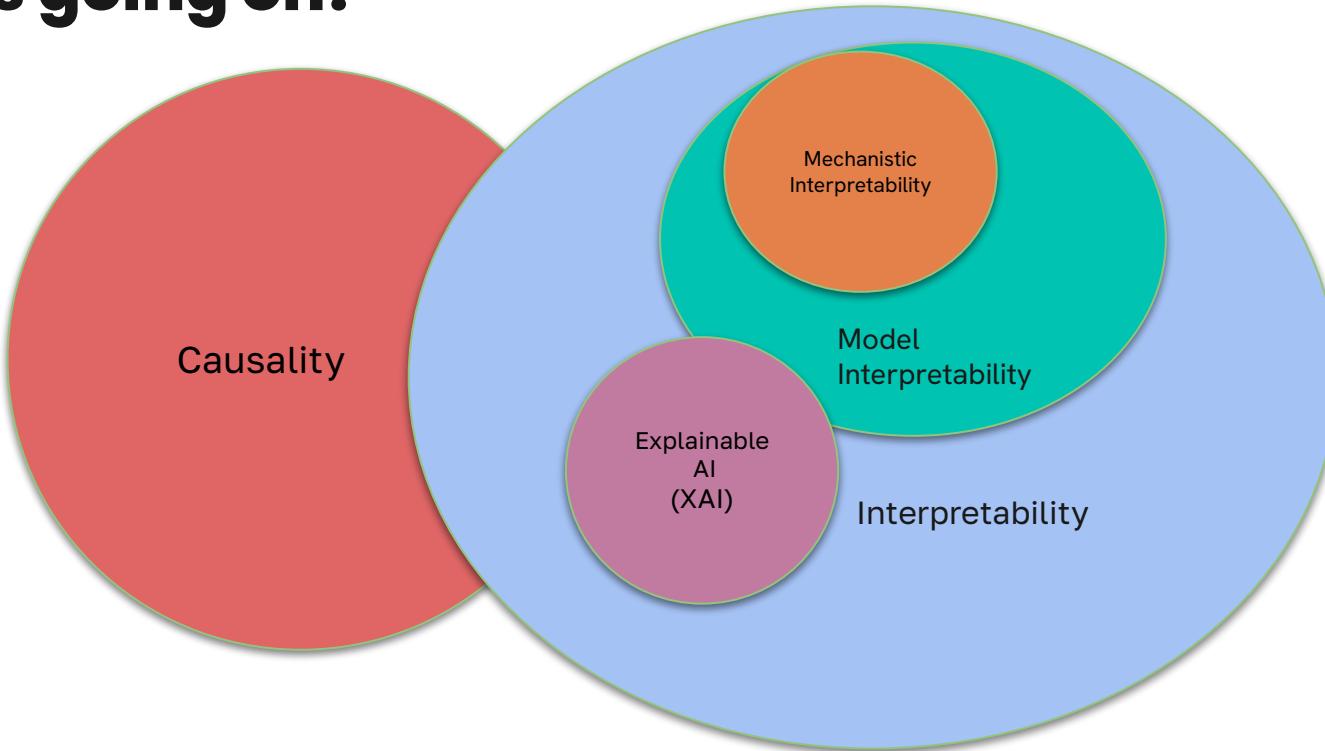
The Case of Interpretability

- ❑ The development of powerful state-of-the-art NLMs comes at the cost of interpretability, since complex NN models offer little transparency about their inner workings and their abilities.

Objectives:

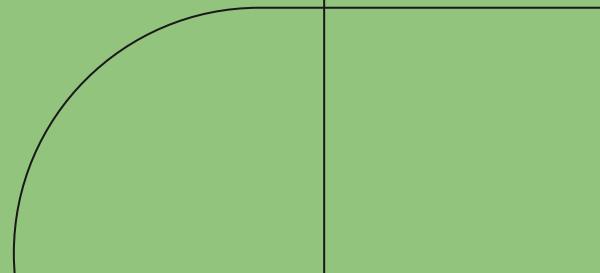
- ❑ Understand the nature of AI systems → be faithful to what influences the AI decisional process.
- ❑ Empower AI system users → derive actionable useful insights from AI choices

What's going on?



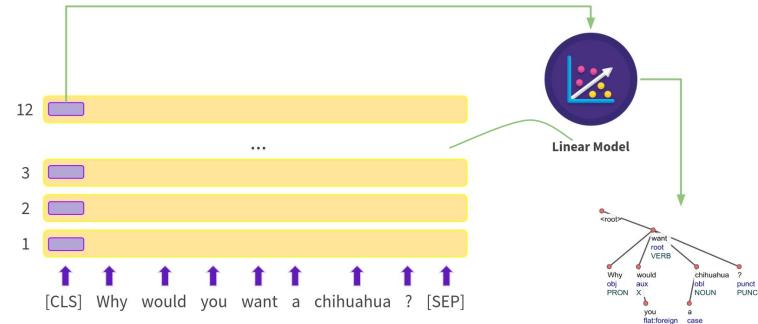
3.1

■ Static approaches



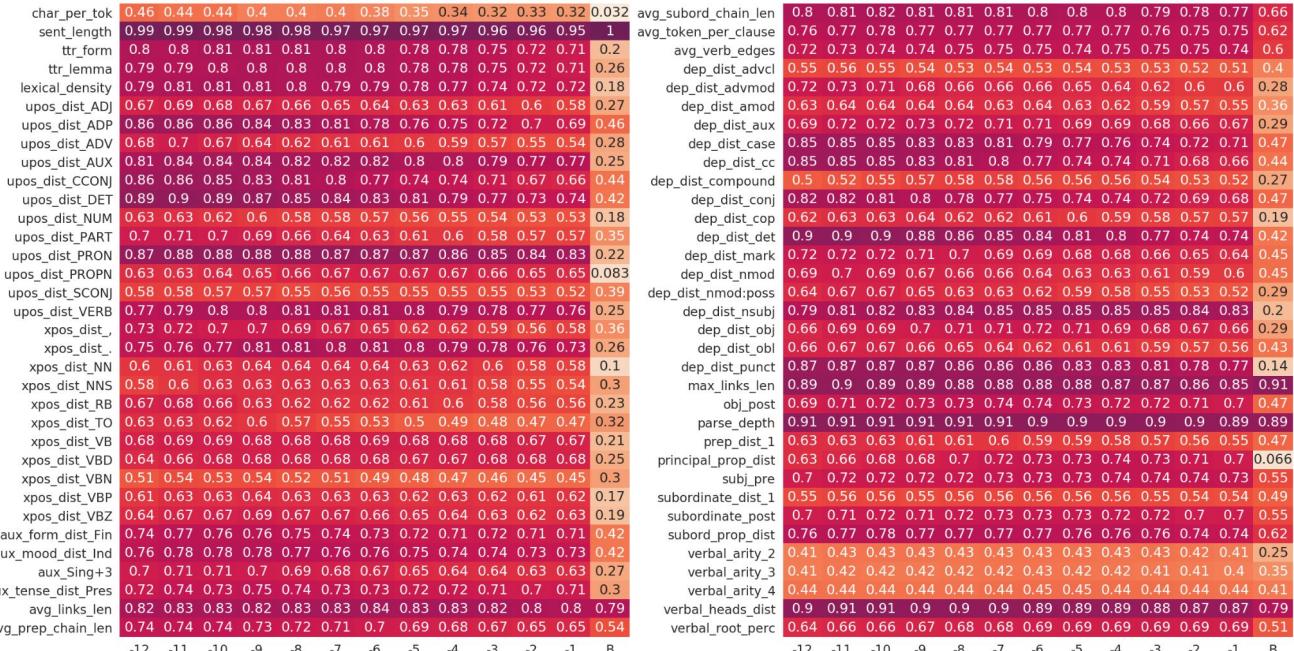
Probing

- Core idea: use supervised models (the probes) to determine what is latently encoded in the hidden states
- Representations have been defined this way, probes are correlative (no syntactic and semantic information)
- A very powerful probe can be trained to predict a specific word in the target model (but rather in your probe) → Control tasks

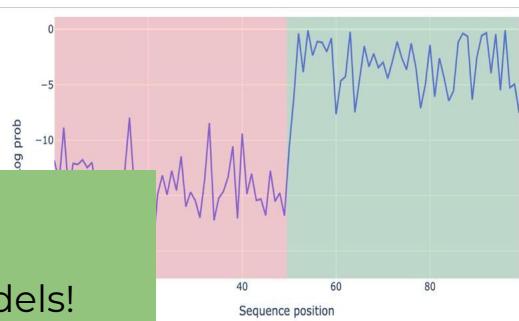


Linguistic probings

Layerwise p scores for the 68 linguistic features.



Mechanistic Interpretability



Difficult to apply on larger models!

SUPERPOSITION

The phenomenon where individual neurons represent multiple, overlapping features rather than a single, distinct concept.

CIRCUITS

The specific arrangements of neurons and attention heads within transformer models that collaboratively perform distinct computational tasks or operations, enabling structured processing and representation of information.

INTRODUCTION

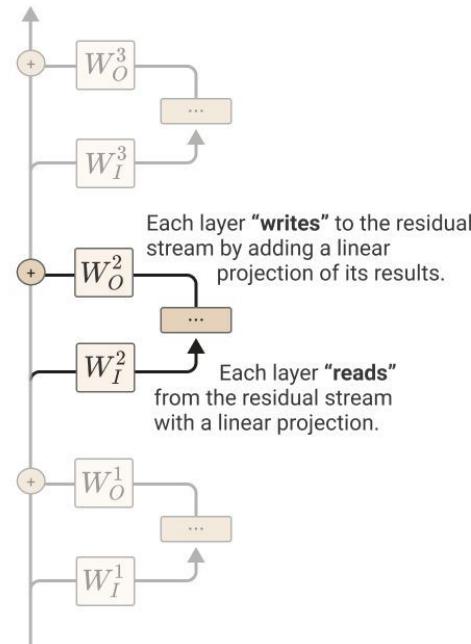
HEADS

Attention heads in transformer models specialized in detecting and copying repeated token patterns, enabling the model to generalize by inducing simple structural rules from prior context.

Mechanistic Interpretability - The residual stream

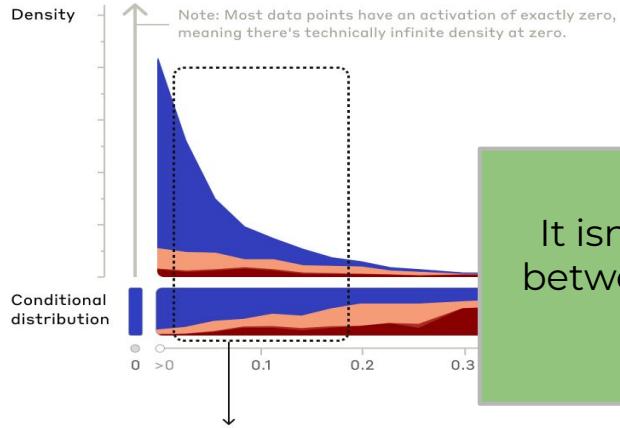
- At any point during the forward pass, the residual stream is simply the sum of the activations of all prior (Attention+MLP) layers along with the initial embedding.
- Attention heads use their **Wv** and **Wo** matrices to **read** and **write** from the **residual stream**.
- These matrices help understand which portions of the residual stream individual attention heads modify, as well as which portions they use to perform this modification.

The residual stream is modified by a sequence of MLP and attention layers “reading from” and “writing to” it with linear operations.



Mechanistic Interpretability

Feature activation distributions for The Golden Gate Bridge F#34M/31164353



Color shows Claude specificity scores

- 0 Irrelevant
- 1 Only vaguely related
- 2 Related to nearby text
- 3 Cleanly identifies the text

It isn't clear how one should trade off between optimizing for reconstruction accuracy and sparsity

Using SAE!

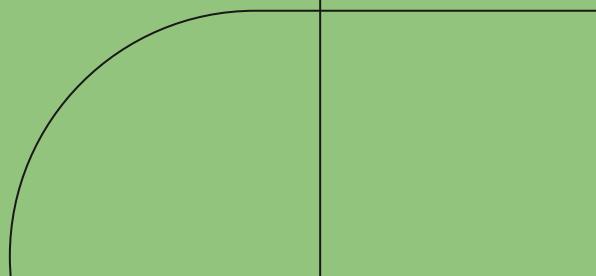
Examples inputs sampled from intervals

bridge and has similar coloring, it is often compared to the Golden Gate Bridge. "Golden." "Okay, Presidio." "Union Square. The Santa Monica Bay, setting over the mountains of Malibu are just a short bike ride away (crossing the GG bridge)

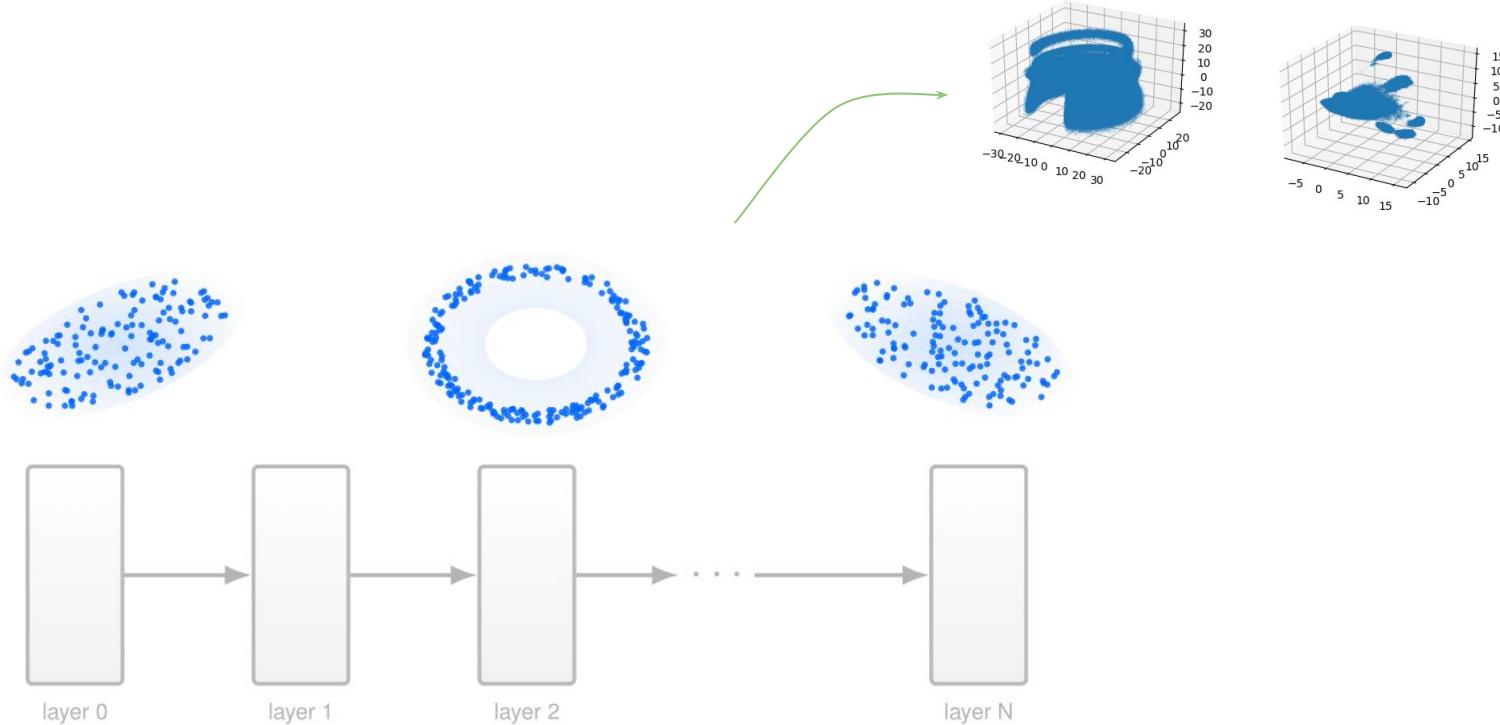
"THE GOLDEN GATE BRIDGE." "YES SIRREE, GORGEOUS AND GLORIOUS. I'm hurtling in through the Golden Gate Bridge at the speed of light. I know the Golden Gate Bridge often does, at

2.2

■ Our approach



The geometry of Large Language Models

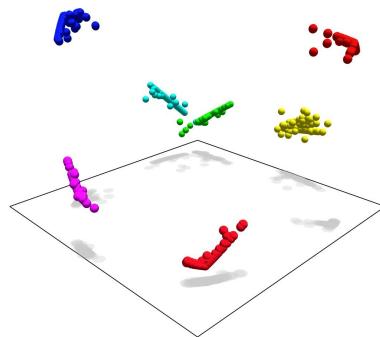


The basics

- ❑ **Narrow Cone Hypothesis (Ethayarajh 2019)** → Models are not isotropic, i.e., they do not uniformly utilize the embedding space.
- ❑ **Manifold Hypothesis (Clayton, 2015)** → High Dimensional data lies on a manifold of much lower dimensionality than the number of features.

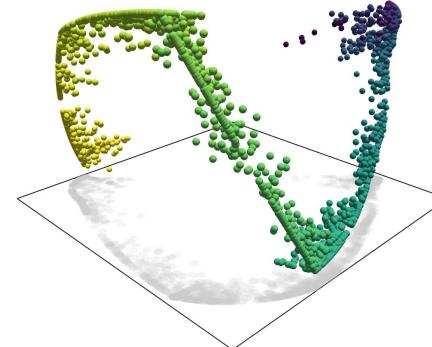
Months of the year

Mistral 7B

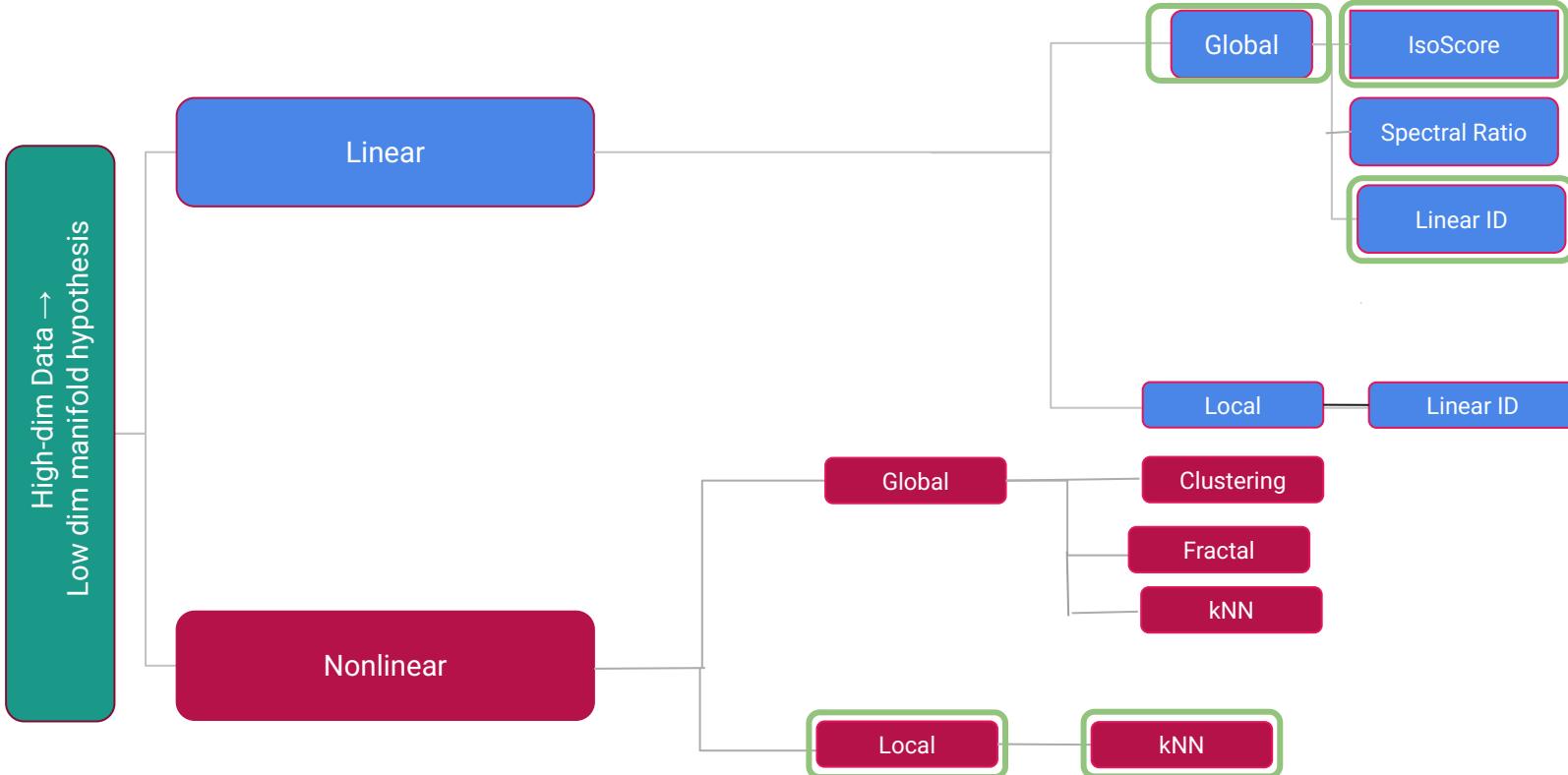


Years of the 20th century

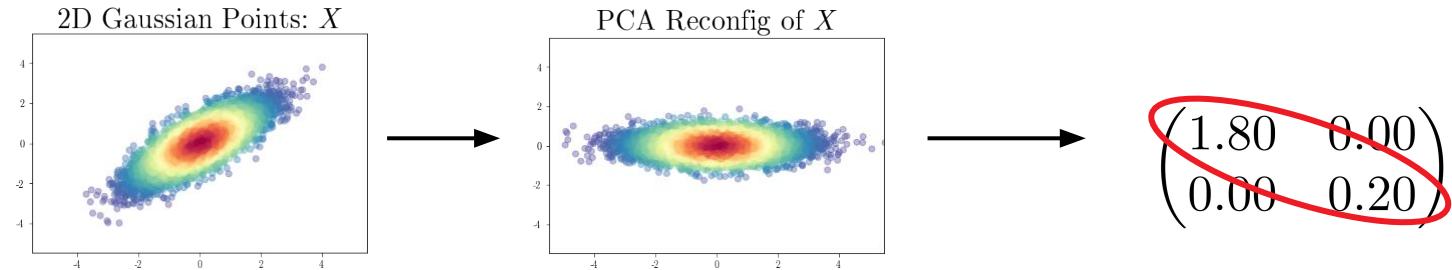
gpt2-small



Taxonomy



IsoScore



1) Point cloud X in R^2 .

2) Project X using PCA to get X^{PCA} .

3) Compute covariance of X^{PCA} .

$$\frac{\sqrt{2}}{\| (1.80 \quad 0.20) \|} \cdot (1.80 \quad 0.20) \rightarrow \frac{\| (1.41 \quad 0.16) - (1 \quad 1) \|}{\sqrt{2(2 - \sqrt{2})}} \rightarrow 0.22$$

4) Normalize the diagonal of X^{PCA} to have the same norm as $(1,1)$ to get V^{PCA} .

5) Calculate the Euclidean distance between V^{PCA} and $(1,1)$ then normalize.

6) Linearly rescale to be in the interval $[0,1]$.

Linear ID

1) Point cloud X in R^2 .

2) Standardize features and perform PCA

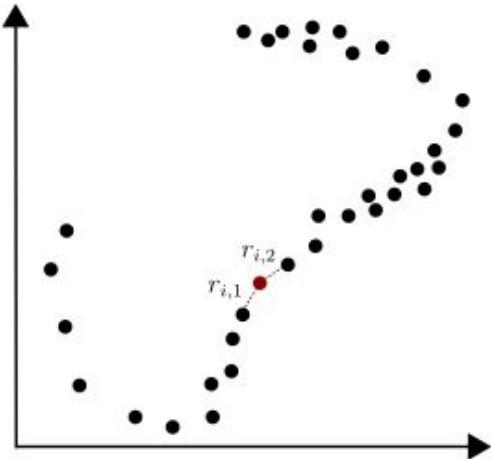
3) Compute cumulative sums, normalizes by total $\tilde{S}(d) = \frac{S(d)}{S(D)} = \frac{\sum_{i=1}^d \lambda_i}{\sum_{i=1}^D \lambda_i}$

4) Finds smallest d such that: $\tilde{S}(d) \geq \alpha$

This first two metrics only capture up to 2^o order statistics of a point cloud.

Many variants exist

Nonlinear metric: TwoNN



- 1) Point cloud X in R^2 . x_i be uniformly sampled on a manifold with *intrinsic dimension* d
- 2) Compute $\mu_i = \frac{r_{i,2}}{r_{i,1}}$
- 3) The probability distribution of μ_i is $p(\mu_i|d) = \frac{d}{\mu_i^{d+1}}$ where d is the *Intrinsic Dimensionality*
- 4) Infer ID from the empirical probability distribution.
- 5) Repeat the calculation selecting a fraction of points at random. This gives the ID as a function of the scale.

→ Many caveats!

Some works

Geometric Signatures of Compositionality Across a Language Model's Lifetime (Jin Hwa Lee, Thomas Jiralerpong, Lei Yu, Yoshua Bengio, Emily Cheng)

- Nonlinear ID tends to capture deeper semantic / compositional structure
- Linear dimensionality tends to correlate more with superficial / input complexity

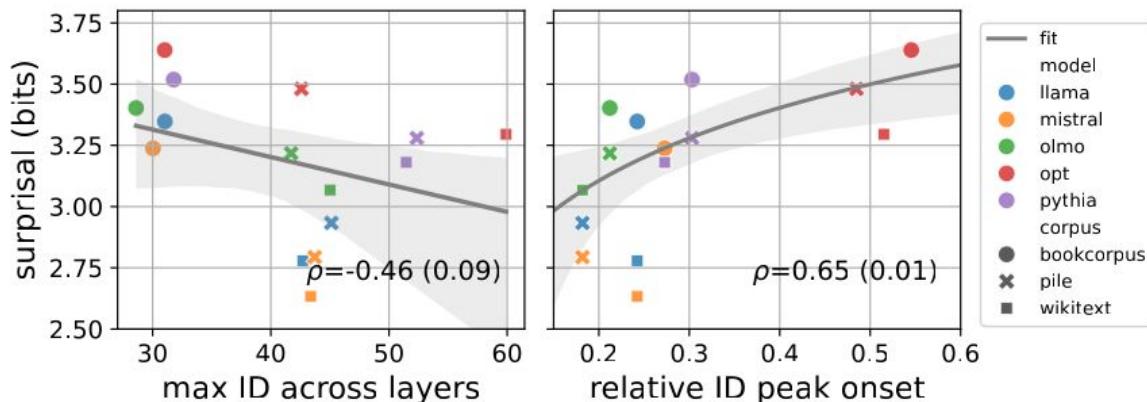
The [quality₁.ADJ] [nationality₁.ADJ]
[job₁.N] [action₁.V] the [size₁.ADJ]
[texture.ADJ] [color.ADJ] [animal.N] then
[action₂.V] the [size₂.ADJ] [quality₂.ADJ]
[nationality₂.ADJ] [job₂.N].

Sentences 17 tokens long, 12 semantic categories and uniformly sample a 50-word vocabulary for each category, categories' vocabularies are disjoint. During data generation, k-grams are independently sampled, which constrains the degrees of freedom in each sentence.

Some works

Emergence of a High-Dimensional Abstraction Phase in Language Transformers (Emily Cheng, Diego Doimo, Corentin Kervadec, Iuri Macocco, Jade Yu, Alessandro Laio, Marco Baroni)

- Across multiple pre-trained transformer LMs and diverse datasets, there is a **phase (layer region)** in which the representations reach a peak in intrinsic dimensionality: this corresponds to the first *full linguistic abstraction* of the input
- The **earlier onset** of this high-dimensional abstraction phase correlates with **better language modeling performance**. In other words, models that “reach abstraction earlier” tend to be stronger.



(Left): Surprisal negatively correlates to maximum ID with Spearman $\rho = -0.46$, $p = 0.09$, meaning that higher ID indicates better LM performance. (Right): Surprisal positively correlates to ID peak onset, $\rho = 0.65$, $p = 0.01$, meaning that an earlier ID peak indicates better LM performance.

Some works

The Representation Landscape of Few-Shot Learning and Fine-Tuning in Large Language Models (Diego Doimo, Alessandro Serra, Alessio Ansuini, Alberto Cazzaniga)

- Both ICL and SFT show a *sharp transition* around the middle layers: before that, the geometry / landscape is relatively smooth or semantically organized; after, it shifts to more task-specific clustering.

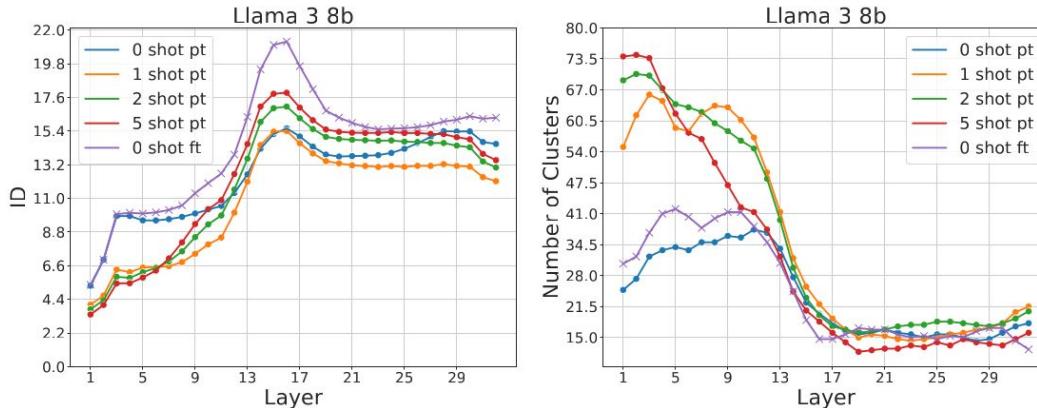
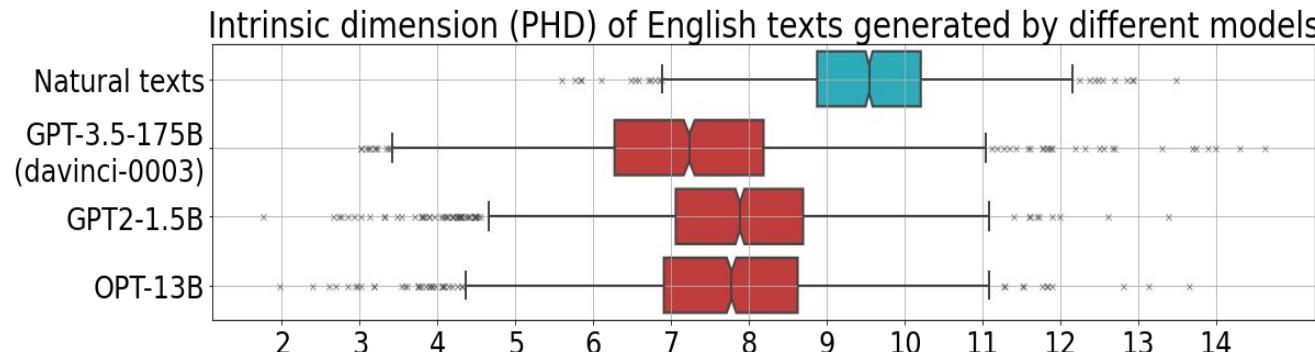


Figure shows the ID (left), the number of density peaks (center), and the fraction of core points (right) for the last-token representation of Llama3-8b for an increasing number of few-shots and fine-tuned models. The three quantities change in the proximity of layer 17 in a two-phased fashion.

Some works

Intrinsic Dimension Estimation for Robust Detection of AI-Generated Texts (Eduard Tulchinskii, Kristian Kuznetsov, Laida Kushnareva, Daniil Cherniavskii, Serguei Barannikov, Irina Piontkovskaya, Sergey Nikolenko, Evgeny Burnaev)

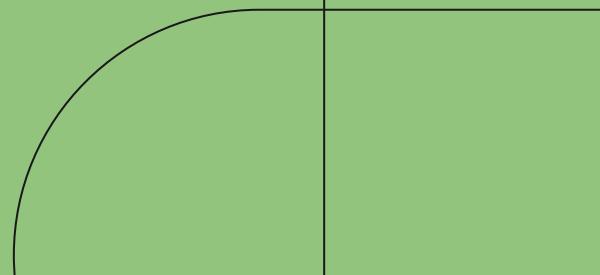
- For several alphabetic languages, **human-written texts** tend to have an average ID ≈ 9 , while **AI-generated texts** have ~ 1.5 lower ID on average



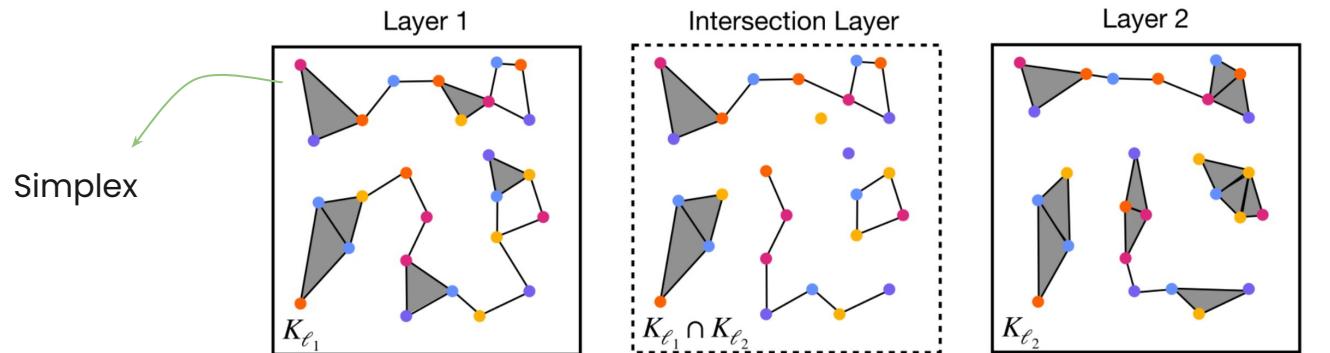
Boxplots of PHD distributions for different generative models in comparison to human-written text on Wikipedia data. Embeddings are obtained from RoBERTa-base.

2.3

■ Dynamic approaches



Topological Data Analysis

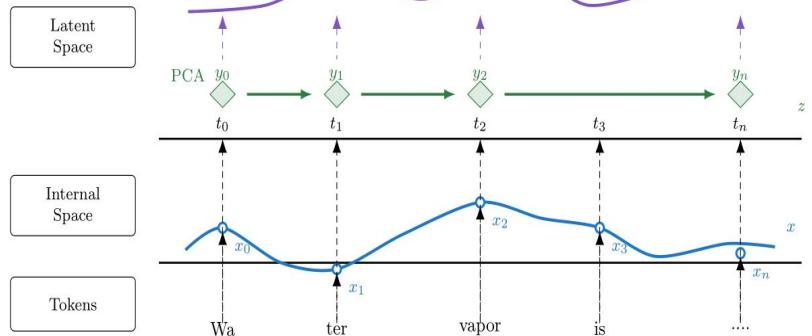


Third step: Intersection Layers

Persistent homology

Zigzag persistent homology

Continuous dynamical system



$$z(t) = z(0) + \int_0^t f(s, z(s); \theta_f) ds$$

with $z(0) = h(\mathbf{y}; \theta_h)$,

A NN is just a function!

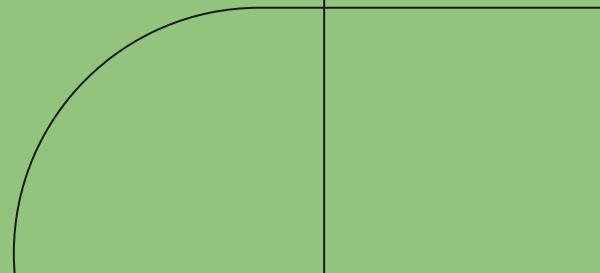
ODE solvers

Since we have a continuous-time system, standard backpropagation cannot be directly applied

Adjoint method $a(t) = \frac{\partial L}{\partial z(t)}$.

3

■ **What we have done**

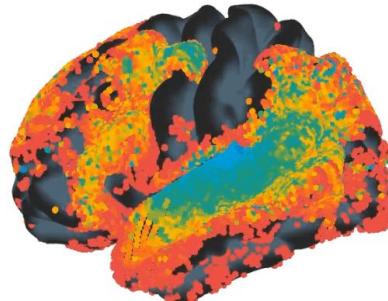


Neural manifold

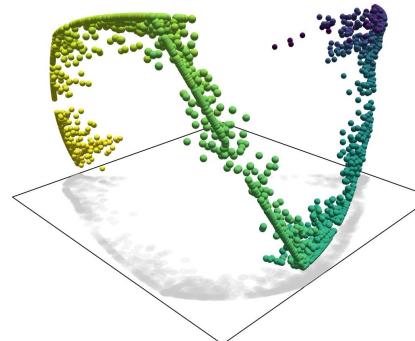
Analogies?

wav2vec 2.0
deep net trained on
600h of speech with
self-supervised learning

human brain
417 volunteers
recorded with fMRI



Years of the 20th century
gpt2-small



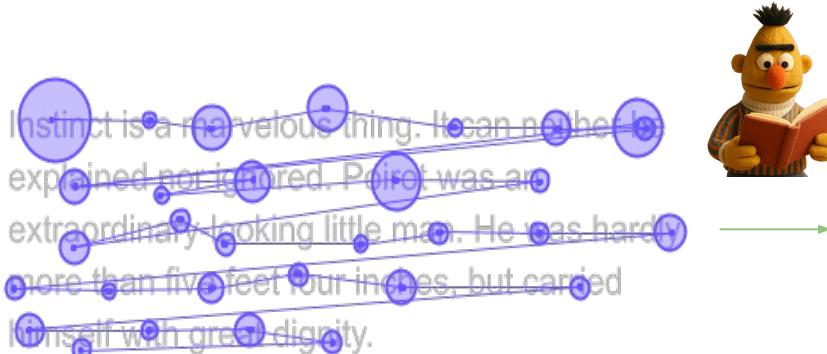
1 – From Human Reading to NLM Understanding: Evaluating the Role of Eye-Tracking Data in Encoder-Based Models

- ❑ “How does human-like learning (e.g., eye-tracking) affect geometry and attention?”
- ❑ “How do fine-tuning strategies reshape geometry, and are these changes permanent or task-specific?”

“From Human Reading to NLM Understanding: Evaluating the Role of Eye-Tracking Data in Encoder-Based Models”. In Proceedings of the Association for Computational Linguistics: ACL 2025. Dini L., Domenichelli L, Brunato D., Dell’Orletta F. (2025).

Eye-tracking data

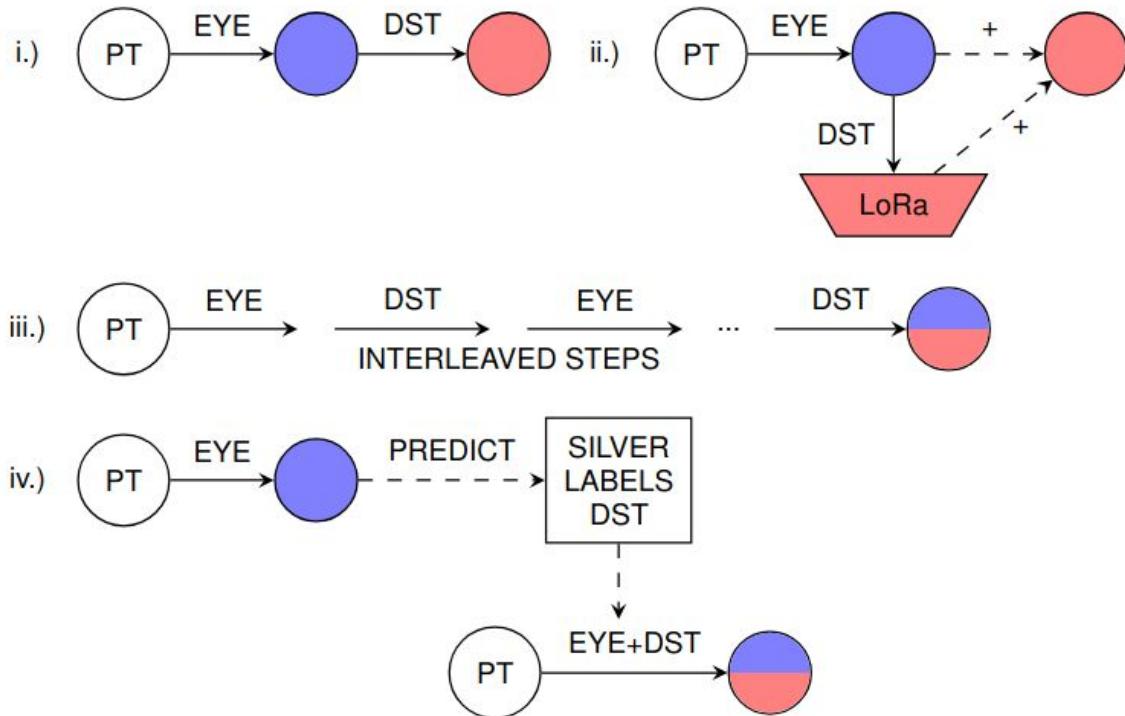
We used the English section of the **GECO** corpus, that contains eye-tracking data for **12 users** reading a novel by Agatha Christie. We treat users separately!



WORD	FFD	TRT	FRNF	NFIX	FRD
The	95	381	1	2	95
intense	54	828	1	3	54
interest	333	565	1	2	333
aroused	78	428	1	3	78
in	154	154	1	1	154
the	165	165	1	1	165

Injection strategies

- i.) Intermediate finetuning
- ii.) Finetuning with LoRa adapters
- iii.) Multi-task finetuning with interleaved steps
- iv.) Multi-task finetuning with eye-tracking silver labels



Results - 1

Fine-tuning	Downstream Task										
	COLA	COMP	MNLI M/MM	MRPC	QNLI	QQP	RTE	SST-2	STSB	WNLI	AVG
INT-FULL	0.56	0.90	0.88 / 0.88	0.90	0.93	0.90	0.70	0.92	0.91	0.56	0.82
INT-LAST3	0.25	0.88	0.70 / 0.71	0.80	0.82	0.81	0.54	0.88	0.81	0.56	0.71
INT-LAST2	0.15	0.85	0.62 / 0.64	0.77	0.75	0.77	0.53	0.86	0.74	0.56	0.66
INT-CLF	0.00	0.70	0.43 / 0.44	0.75	0.61	0.61	0.50	0.76	0.12	0.56	0.50
LORA	0.41	0.87	0.85 / 0.85	0.80	0.91	0.86	0.49	0.93	0.88	0.55	0.76
MT-IL	0.53	0.91	0.83 / 0.83	0.90	0.92	0.88	0.75	0.93	0.90	0.52	0.81
MT-SILV	0.51	0.91	0.88 / 0.87	0.88	0.93	0.90	0.60	0.93	0.91	0.50	0.76
DST-ONLY	0.60	0.91	0.88 / 0.88	0.90	0.93	0.90	0.77	0.93	0.90	0.56	0.83

Intermediate full finetuning (**INT-FULL**) and the two Multi-task approaches, specially the one with interleaved steps (**MT-IL**) generally preserve performances on downstream-tasks.

Results – 2

Fine-tuning	Attention correlation (last layer)										
	COLA	COMP	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STSB	WNLI	AVG
INT-FULL	0.19	0.35	0.05	0.16	0.06	0.08	0.12	0.04	0.09	0.18	0.13
INT-LAST3	0.29	0.28	0.24	0.31	0.16	0.29	0.26	0.21	0.20	0.23	0.25
INT-LAST2	0.28	0.26	0.19	0.28	0.30	0.24	0.28	0.29	0.31	0.28	0.27
INT-CLF	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29
LORA	0.27	0.22	0.13	0.20	0.13	0.20	0.32	0.16	0.21	0.30	0.21
MT-IL	0.26	0.23	0.22	0.27	0.16	0.21	0.27	0.20	0.27	0.28	0.24
MT-SILV	0.25	0.11	0.28	0.15	0.31	0.23	0.33	0.31	0.14	0.27	0.24
DST-ONLY	0.06	0.08	0.05	0.01	0.07	0.03	0.02	0.07	0.11	0.12	0.08

Overall all methods increase correlation coefficients, specially intermediate finetuning (excluding INT-FULL), followed by multitask approaches.

Results – 3

Linear ID													
F-T	COLA	COMP	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STSB	WNLI	Avg		
INT-FULL	127	89	191	185	242	11	161	4	32	127	117		
INT-LAST3	173	135	194	162	148	154	154	92	142	154	151		
INT-LAST2	162	148	166	160	160	153	157	142	158	158	157		
INT-CLF	160	160	160	160	160	160	160	160	160	160	160		
LORA	184	144	310	158	279	256	166	202	146	163	201		
MT-IL	232	154	110	179	228	88	155	251	228	152	178		
MT-SILV	249	209	233	268	251	207	206	221	264	209	232		
DST-ONLY	289	249	249	249	249	3	278	4	249	16	186		
BASE					297					–			
EYE-ONLY					160					–			

IsoScore* $\times 10^3$													
F-T	COLA	COMP	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STSB	WNLI	Avg		
INT-FULL	0.74	1.19	2.75	15.59	3.03	0.35	5.95	0.88	0.71	9.74	4.09		
INT-LAST3	7.92	2.96	7.40	6.79	2.10	3.53	4.36	0.69	3.46	5.00	4.42		
INT-LAST2	5.89	3.78	7.45	5.05	5.58	4.08	4.35	3.24	5.77	4.69	4.99		
INT-CLF	4.99	4.99	4.99	4.99	4.99	4.99	4.99	4.99	4.99	4.99	4.99		
LORA	11.26	5.36	30.23	8.47	11.34	28.62	6.01	9.99	2.72	5.27	11.93		
MT-IL	4.34	5.02	1.39	2.71	4.06	1.07	2.52	5.83	4.66	3.69	3.53		
MT-SILV	17.38	10.76	8.28	12.00	11.89	6.57	10.14	11.26	21.56	11.97	12.18		
DST-ONLY	6.53	35.94	4.58	15.08	4.69	0.40	28.03	1.17	11.14	0.27	10.78		
BASE								28.69				–	
EYE-ONLY								4.97				–	

In most tasks, we observe that eye-tracking data injection yields larger reductions in isotropy and intrinsic dimensionality than standard finetuning, yet preserves downstream performance.

2 - The Role of Eye-Tracking Data in Encoder-Based Models: an In-depth Linguistic Analysis

“Can geometry capture and distinguish linguistic features, and is this consistent across languages?”

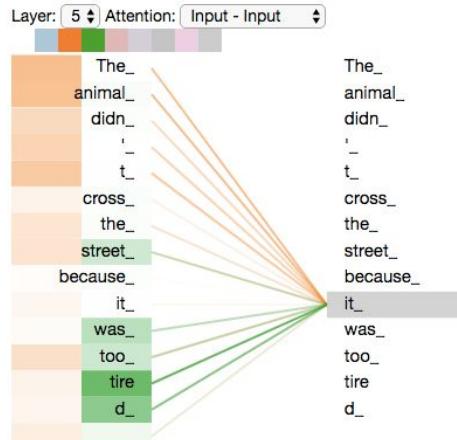
“The Role of Eye-Tracking Data in Encoder-Based Models: an In-depth Linguistic Analysis”. In Proceedings of the Italian Association for Computational Linguistics: CLIC-it 2025. Domenichelli L, Dini L., Brunato D., Dell’Orletta F. (2025).

Motivations

Why eye-tracking in NLP?

- Neural Language Models are powerful but hard to interpret.
- Cognitive signals (like eye-tracking data) offer insight into human language processing.
- **Goal:** study the impact of eye-tracking data injection on the way NLMs build words representations.

Attention patterns



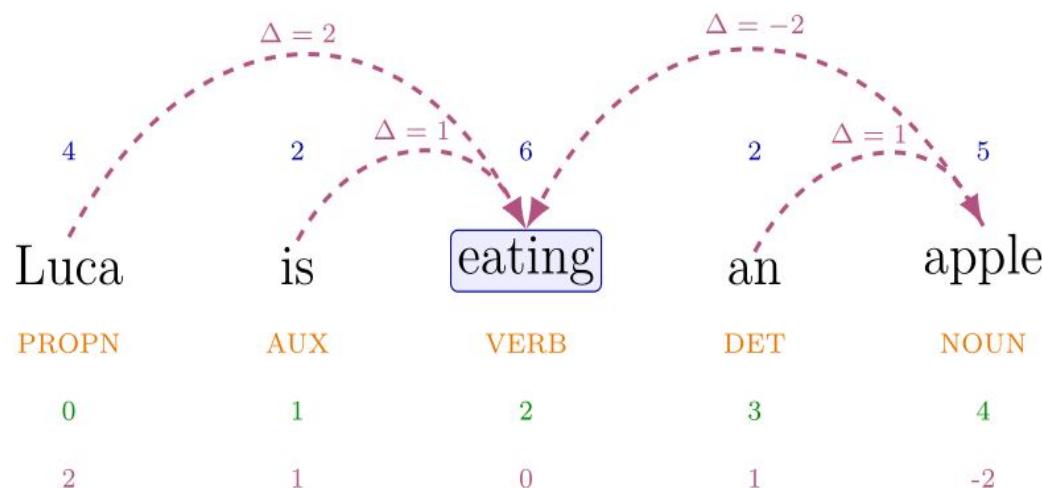
Embedding space



Linguistically informed approach

To enable a more fine-grained analysis of how ET fine-tuning affects word representations, we condition our evaluation on linguistic features extracted from UD treebanks:

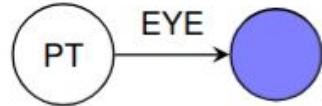
- Word length
- Part-of-Speech
- Position in sentence
- Distance from syntactic head



Eye-tracking data

Eye-tracking data are measurement of eye-movements, in this case collected during **reading**.

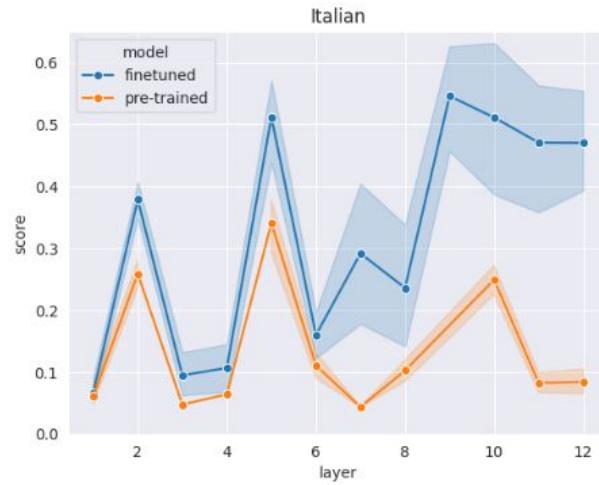
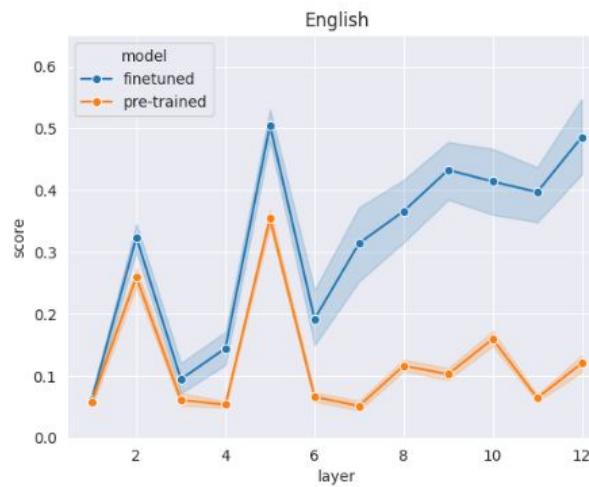
We used the **English** and **Italian** sections of the MECO eye-tracking corpus.



Instinct is a marvelous thing. It can neither be explained nor ignored. Poiret was an extraordinarily looking little man. He was hardly more than five feet four inches, but carried himself with great dignity.

WORD	FFD	TRT	FRNF	NFIX	FRD
The	95	381	1	2	95
intense	54	828	1	3	54
interest	333	565	1	2	333
aroused	78	428	1	3	78
in	154	154	1	1	154
the	165	165	1	1	165

Attention correlation



As shown by literature, fine-tuning on eye-tracking increases correlations between model attention (attention weights) and human attention (TRT).

Representation space

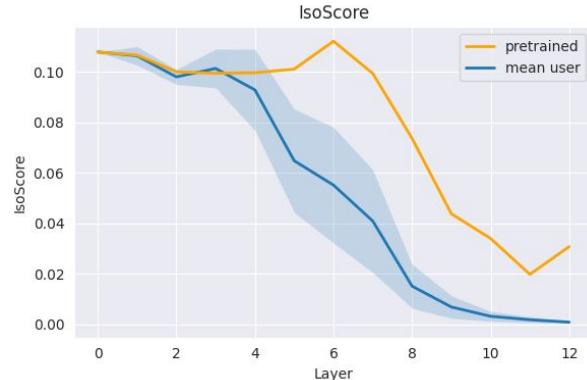
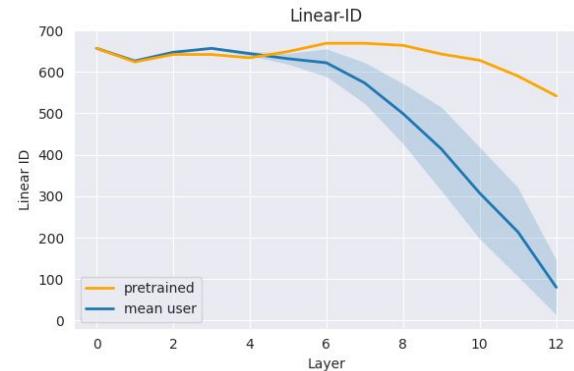
What we know already:

- Embeddings from NLM tend to be anisotropic
- They need way less dimension than their ambient space

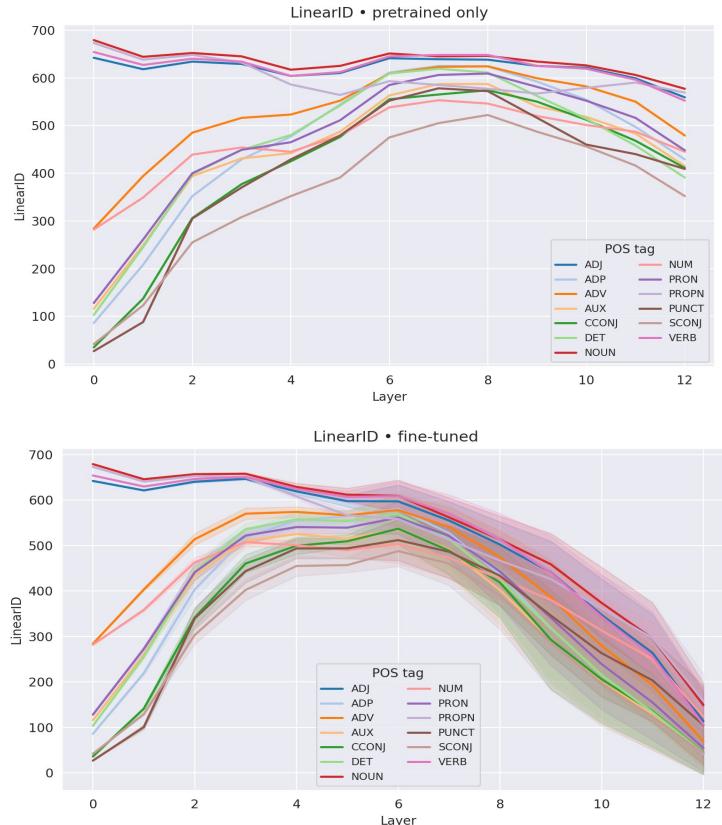
After ET fine-tuning...

- Representations become even more anisotropic as depth increases!
- Representations have less degrees of freedom as depth increase!

In line with previous studies!

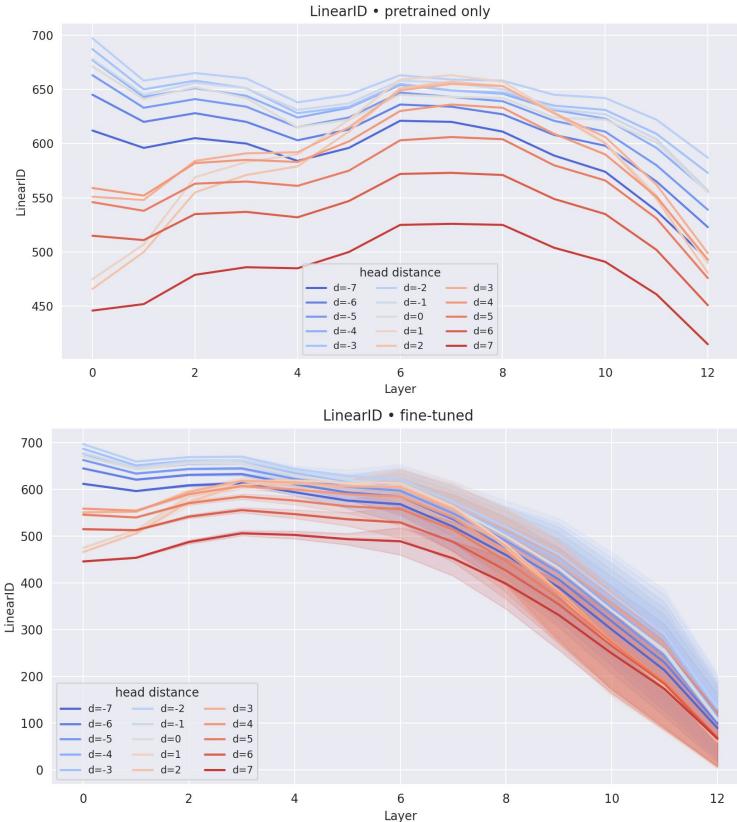


Representation space – POS classes



- Fine-tuning further **anisotropize** and **reduces dimensions**.
- **Content words** (NOUN, PROPN, VERB) tend to **require more dimensions** uniformly in space.

Representation space – Head Distance classes



- Notable asymmetry **already in the pre-trained model** based on the position of the dependent.
- Related to closed functional words but also other unknown effects.

Some statistics

POS	tokens	TTR	Top UD relation		Head dist.		Span length		Head arity		Left of head share	examples
			label	share	val	share	val	share	val	share		
NOUN	21.38	15.90	nmod	29.67	3.00	29.29	5.00	17.12	2.00	39.57	17.64	anni, presidente, , parte
ADP	16.40	0.28	case	91.07	2.00	51.39	2.00	39.60	0.00	99.64	98.39	di, in, a
PUNCT	11.94	0.08	punct	100.00	1.00	25.21	1.00	99.74	0.00	100.00	21.25	, , , "
DET	10.82	0.55	det	92.27	1.00	85.33	2.00	61.64	0.00	99.92	99.71	il, la, un
VERB	9.09	33.21	root	38.23	0.00	38.23	8.00	17.80	3.00	26.88	4.58	ha, è, hanno
ADJ	7.14	27.09	amod	84.40	1.00	75.81	8.00	18.30	0.00	75.56	26.53	primo, prima, nuovo
PROPN	5.23	38.22	nmod	37.92	1.00	33.56	6.00	20.66	1.00	37.53	13.22	italia, shakespeare, balzac
AUX	4.23	1.91	aux	52.11	1.00	70.09	1.00	28.38	0.00	99.91	95.11	è, sono, ha
ADV	4.12	5.47	advmod	91.00	1.00	48.10	3.00	31.74	0.00	84.86	79.64	non, più, anche
PRON	3.65	1.65	nsubj	29.29	1.00	42.91	3.00	38.66	0.00	68.27	78.19	che, si, chi
CCONJ	2.97	0.49	cc	99.92	1.00	37.50	1.00	82.18	0.00	99.99	99.91	e, o, ma
NUM	1.76	23.56	nummod	67.70	1.00	46.54	4.00	28.27	0.00	64.92	50.24	due, 1, tre
SCONJ	1.11	1.60	mark	91.71	1.00	20.29	3.00	41.87	0.00	99.47	92.20	che, se,

ITALIAN

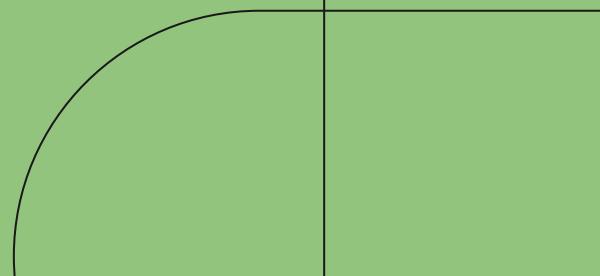
POS	tokens	TTR	Top UD relation		Head dist.		Span length		Head arity		Left of head share	examples
			label	share	val	share	val	share	val	share		
NOUN	17.24	20.54	obj	20.23	2.00	23.75	4.00	18.33	2.00	27.81	29.76	time, people, way
PUNCT	11.35	0.42	punct	100.00	1.00	26.80	1.00	96.14	0.00	100.00	34.27	, , , , "
VERB	11.34	16.01	root	30.91	0.00	30.91	4.00	27.70	3.00	27.54	8.40	have, get, know
PRON	9.37	0.76	nsubj	55.28	1.00	50.13	2.00	26.52	0.00	89.92	79.57	i, you, it
ADP	9.01	0.66	case	92.33	1.00	39.82	2.00	64.49	0.00	99.09	92.48	of, in, to
DET	8.27	0.22	det	96.52	1.00	57.66	3.00	60.41	0.00	98.18	98.53	the, a, this
ADJ	6.49	17.05	amod	68.24	1.00	56.63	4.00	22.45	0.00	65.24	70.36	other, new, good
AUX	5.91	0.78	aux	51.22	1.00	47.30	2.00	31.25	0.00	98.13	96.61	is, was, be
PROPN	5.75	33.99	compound	20.15	1.00	35.26	5.00	17.75	0.00	46.26	42.67	bush, us, al
ADV	5.09	7.22	advmod	93.20	1.00	54.05	4.00	36.17	0.00	85.62	69.22	so, when, just
CCONJ	3.40	0.32	cc	98.25	1.00	43.53	3.00	86.27	0.00	99.26	99.49	and, but, or
PART	2.18	0.17	mark	76.42	1.00	82.29	2.00	76.85	0.00	99.15	98.51	to, not, too
SCONJ	1.96	1.63	mark	98.43	2.00	24.30	2.00	40.58	0.00	98.56	98.51	that, if, as

ENGLISH

Different statistics,
similar scores

4

■ Ongoing work



The impact of data ordering on the pretraining phase

“Does curriculum learning reshape geometry, and can early geometry predict performance?”

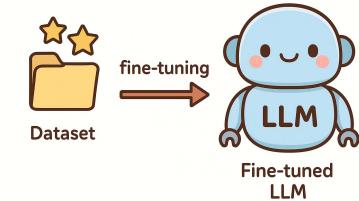
Evaluation

Evaluation strategies

Isoscore (Isotropy)
Linear ID (@99%)

10.000 sentences not seen already

Fine-tuning

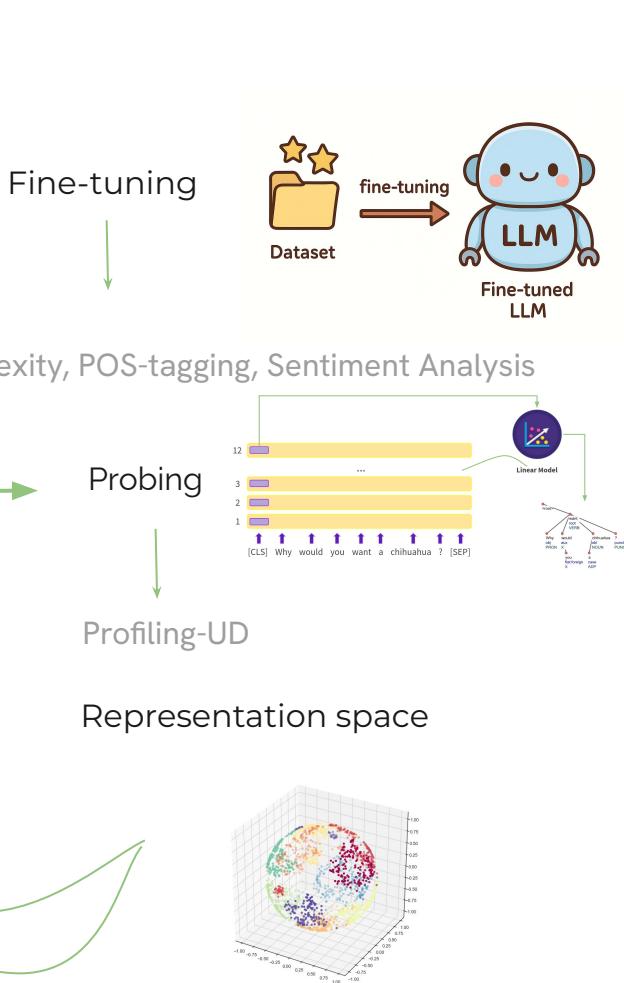


Complexity, POS-tagging, Sentiment Analysis

Probing

Profiling-UD

Representation space



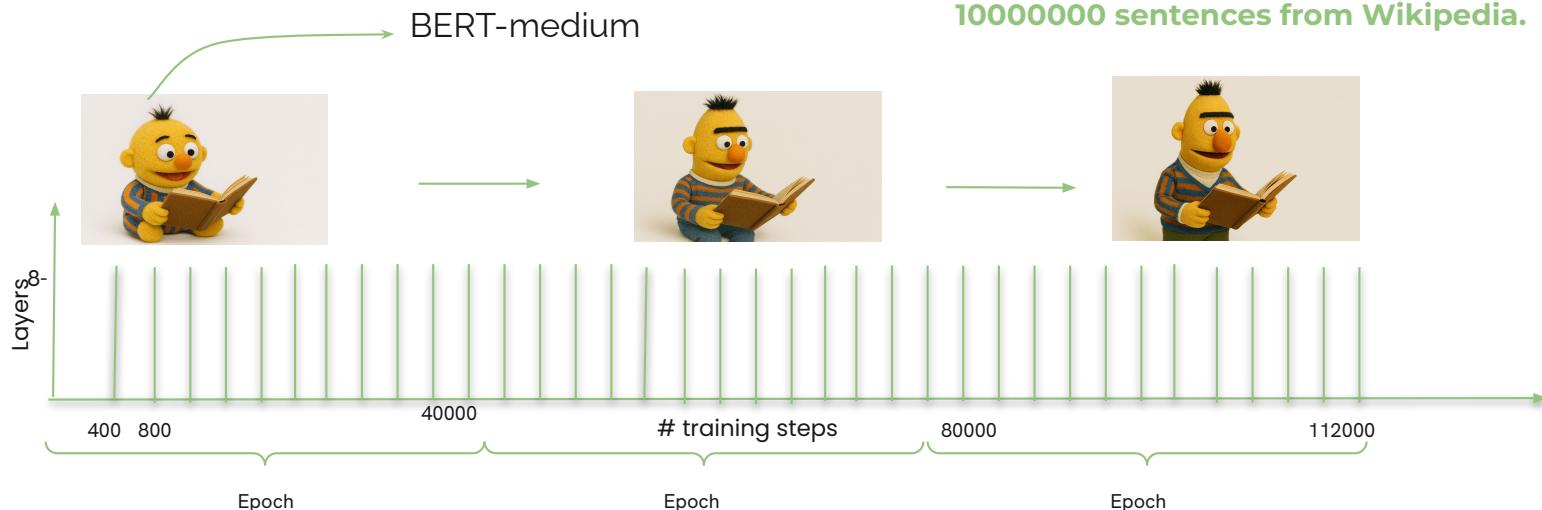
Ordering strategies

Ordering strategies:

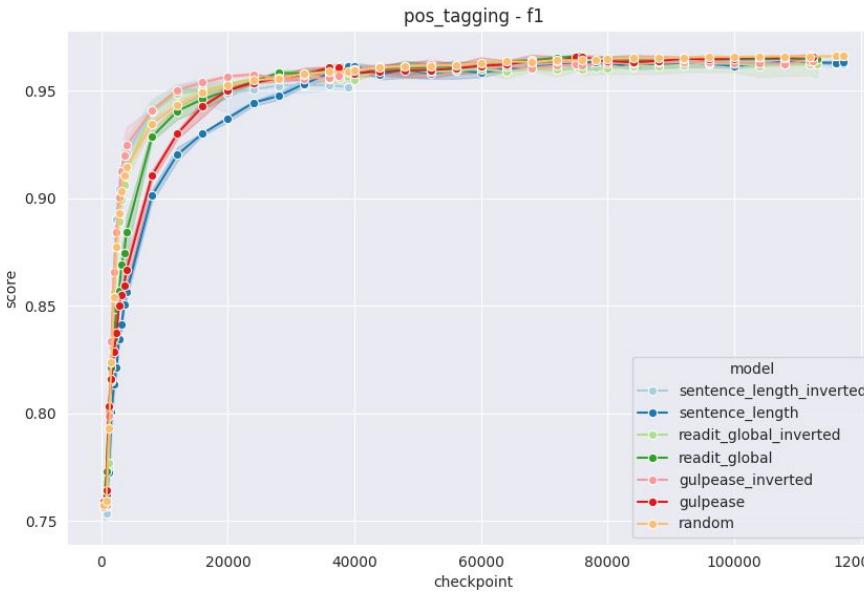
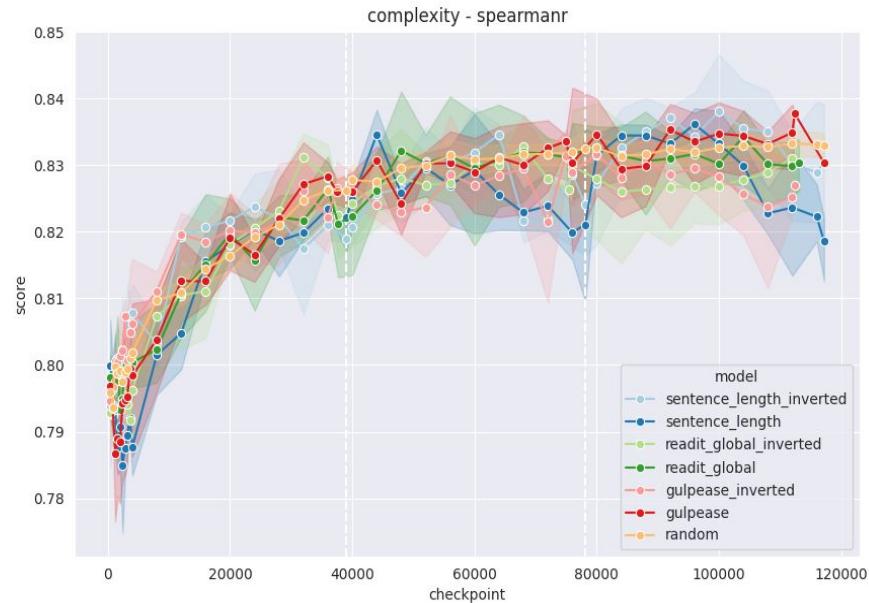
- ❑ Sentences' length
- ❑ Gulpease
- ❑ ReadIT
- ❑ 3 Random orderings

Linguistically Motivated ordering

... and anti-curriculum!

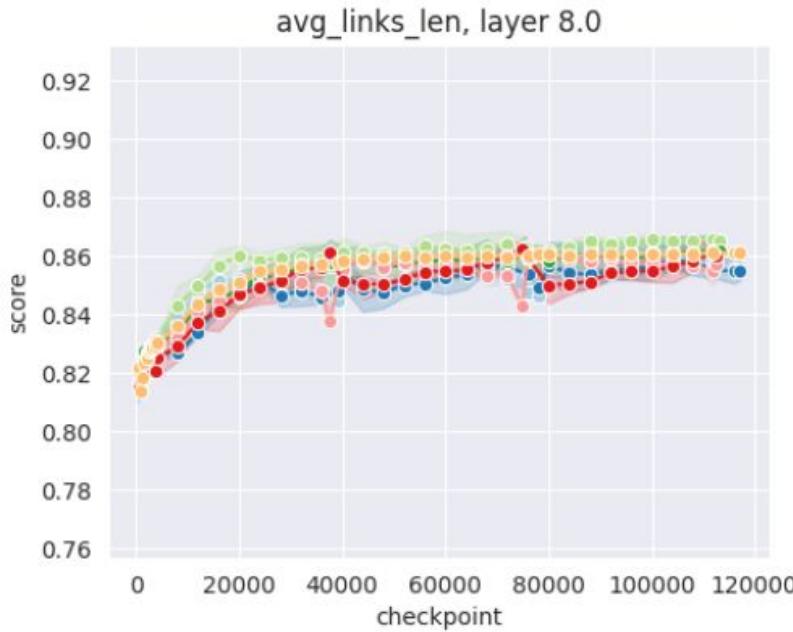
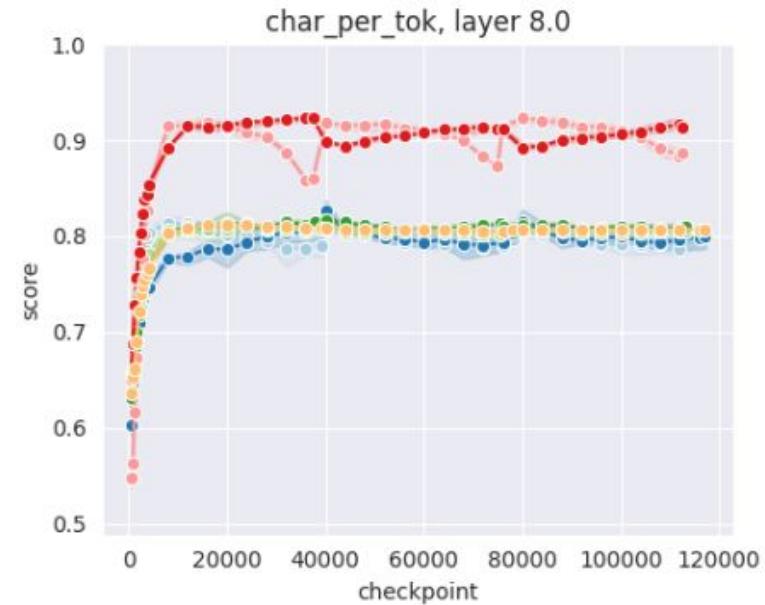


Finetuning



Qualitatively similar, only difference is the “speed of convergence”.

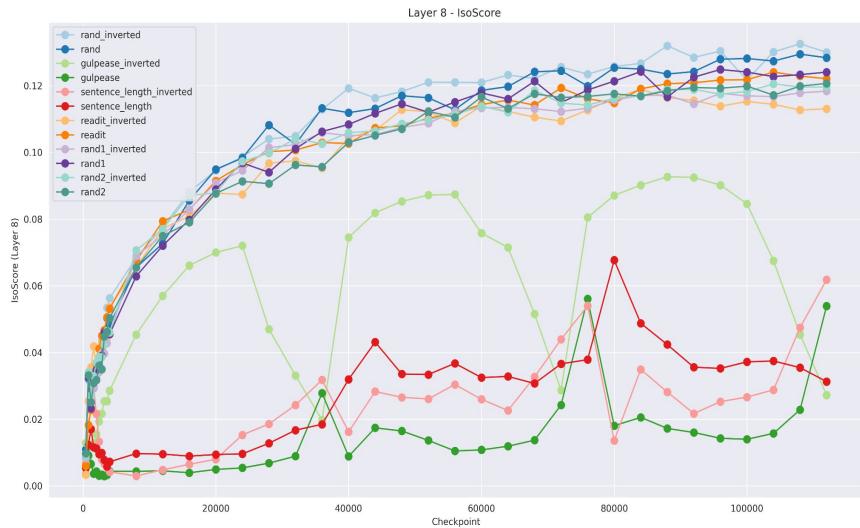
Probing



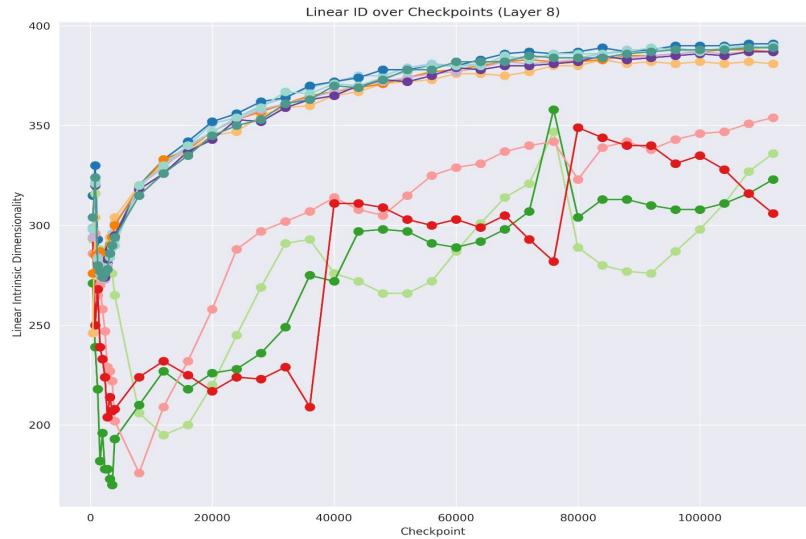
Most features have plots similar to the one on the left, with some exceptions...

Representation space

Isotropy



Linear ID



Qualitatively different behaviour between models with curriculum-ordered and not ordered data!

Future work

- How will this research field evolve? → Unknown, the field is blooming now!

🤓 About us....

- Keep working on our curriculum learning project.
- Expand our second paper and work on a “Linguistic Profiling of Geometric Spaces” 📝.
- Visiting period abroad while working on my PhD proposal 🎉.

Carried out activities

Passed exams:

- Topological Data Analysis (16 CFU)
- Statistical Learning and Large Data 1 & 2 (40 CFU)
- Predictive Models for Time Series Data (24 CFU)

80 CFU TOT EXAMS DONE!

Carried out activities

Passed exams:

- Topological Data Analysis (16 CFU)
- Statistical Learning and Large Data 1 & 2 (40 CFU)
- Predictive Models for Time Series Data (24 CFU)

→ 80 CFU TOT EXAMS DONE!

PhD Schools:

- HPLT & NLPL 2025 Winter School in Oslo A small emoji of the flag of Norway.
- Learning over Time Spring School in Siena A small emoji of the flag of Siena, Italy.
- AI & Society 2025 Summer School in Pisa A small emoji of the Leaning Tower of Pisa.

→ 60 H TOT MAYBE DONE!

Research seminars attended:

- Lectures on Computational Linguistics in Milan

Carried out activities

Passed exams:

- Topological Data Analysis (16 CFU)
- Statistical Learning and Large Data 1 & 2 (40 CFU)
- Predictive Models for Time Series Data (24 CFU)

→ 80 CFU TOT EXAMS DONE!

PhD Schools:

- HPLT & NLPL 2025 Winter School in Oslo
- Learning over Time Spring School in Siena
- AI & Society 2025 Summer School in Pisa

→ 60 H TOT MAYBE DONE!

Research seminars attended:

- Lectures on Computational Linguistics in Milan

Written papers:

- *"From Human Reading to NLM Understanding: Evaluating the Role of Eye-Tracking Data in Encoder-Based Models"*. In Proceedings of the Association for Computational Linguistics: ACL 2025. Dini L., Domenichelli L, Brunato D., Dell'Orletta F. (2025).
- *"The Role of Eye-Tracking Data in Encoder-Based Models: an In-depth Linguistic Analysis"*. In Proceedings of the Italian Association for Computational Linguistics: CLIC-it 2025. Domenichelli L, Dini L., Brunato D., Dell'Orletta F. (2025).

Questions?

Thank you for your attention!

References

- ❑ Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin (2017). "Attention is all you need". In: Advances in neural information processing systems 30.
- ❑ Rogers, Anna, Olga Kovaleva, and Anna Rumshisky (2020). "A Primer in BERTology: What We Know About How BERT Works". In: Transactions of the ACL.
- ❑ Miaschi, Alessio and Felice Dell'Orletta (2020). "Contextual and non-contextual word embeddings: an in-depth linguistic investigation". In: Proceedings of the 5th Workshop on Representation Learning for NLP, pp. 110-119
- ❑ Hewitt, John and Christopher D. Manning (June 2019). "A Structural Probe for Finding Syntax in Word Representations". In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Ed. by Jill
- ❑ Rudman, William, Nate Gillman, Taylor Rayne, and Carsten Eickhoff (May 2022a). "IsoScore: Measuring the Uniformity of Embedding Space Utilization". In: Findings of the Association for Computational Linguistics: ACL 2022. Ed. by Smaranda Muresan, Preslav Nakov, and Aline Villavicencio. Dublin, Ireland: Association for Computational Linguistics, pp. 3325–3339.
- ❑ Team, Anthropic Interpretability (2024). The Engineering Challenges of Scaling Interpretability. Anthropic Research Blog. <https://www.anthropic.com/research/engineering-challenges-interpretability>
- ❑ Bengio, Yoshua, Jérôme Louradour, Ronan Collobert, and Jason Weston (2009). "Curriculum learning". In: Proceedings of the 26th annual international conference on machine learning, pp. 41–48.
- ❑ Cai, Xingyu, Jiaji Huang, Yuchen Bian, and Kenneth Church (2021). "Isotropy in the contextual embedding space: Clusters and manifolds". In: International conference on learning representations.
- ❑ Ansuini, Alessio, Alessandro Laio, Jakob H Macke, and Davide Zoccolan (2019). "Intrinsic dimension of data representations in deep neural networks". In: Advances in Neural Information Processing Systems 32
- ❑ Cheng, Emily, et al. "Emergence of a High-Dimensional Abstraction Phase in Language Transformers." *The Thirteenth International Conference on Learning Representations*.
- ❑ Modell, Alexander, Patrick Rubin-Delanchy, and Nick Whiteley. "The Origins of Representation Manifolds in Large Language Models." *arXiv e-prints* (2025): arXiv-2505.
- ❑ Rajaei, Sara and Mohammad Taher Pilehvar (2021). "How Does Fine-tuning Affect the Geometry of Embedding Space? A Case Study on Isotropy". In: Findings of EMNLP.
- ❑ Doimo, Diego, et al. "The representation landscape of few-shot learning and fine-tuning in large language models." *Advances in Neural Information Processing Systems* 37 (2024): 18122-18165.
- ❑ Tulchinskii, Eduard, et al. "Intrinsic dimension estimation for robust detection of ai-generated texts." *Advances in Neural Information Processing Systems* 36 (2023): 39257-39276.
- ❑ Valeriani, Lucrezia, Diego Doimo, Francesca Cuturrello, Alessandro Laio, Alessio Ansuini, and Alberto Cazzaniga (2023). "The geometry of hidden representations of large transformer models". In: Advances in Neural Information Processing Systems 36, pp. 51234–51252
- ❑ Elhage, et al., "A Mathematical Framework for Transformer Circuits", Transformer Circuits Thread, 2021.
- ❑ Gardinazzi, Yuri, et al. "Persistent topological features in large language models." *arXiv preprint arXiv:2410.11042* (2024).
- ❑ Li, Qing, et al. "HD-NDEs: Neural Differential Equations for Hallucination Detection in LLMs." *arXiv e-prints* (2025): arXiv-2506
- ❑ Dini, Luca, et al. "From Human Reading to NLM Understanding: Evaluating the Role of Eye-Tracking Data in Encoder-Based Models." *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*. 2025.
- ❑ Dini, Luca, et al. "In the eyes of a language model: A comprehensive examination through eye-tracking data." *Neurocomputing* (2025): 130617.