Investigating Representation
Goometry In Neural Language Models

Lucia Domenichelli - National PhD in Artificial Intelligence




TABLE OF CONTENTS

01 02

PhD project overview State of the Art
03 04

What we have done Ongoing work




B PhD project overview




Some background...

Documents

Deep Learning-based NLP
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obtained via word2vec,
doc2vec, GloVe, etc.
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Research questions ?

d How does representation geometry form and evolve across layers,
training objectives, model sizes, and curricula, and can early-stage
geometry predict eventual performance or learning speed?

O How do adaptation choices, such as fine-tuning strategies reshape

geometry? Are these changes durable or task-specific, and do they
translate into accuracy gains?

d Do geometric properties reliably encode and distinguish linguistic
features across languages, and how do these properties correlate with
(or predict changes in) downstream behavior?




Research questions ?

d How does representation geometry form and evolve across layers,
training objectives, model sizes, and curricula, and can early-stage
geometry predict eventual performance or learning speed?

a How do adaptation choices, such as fine-tuning strategies reshape

geometry? Are these changes durable or task-specific, and do they
translate into accuracy gains?

A Do geometric properties reliably encode and distinguish linguistic
features across languages, and how do these properties correlate with
(or predict changes in) downstream behavior?




Why understand LLMs?

D They are everyWhere f. | vetheusers: ampdotis my new accoun @lovetheuser. - Dec 31, 2022 «+
#¥ Humans can't accept the truth about GPT-3, so they modified GPT-3 to be
understandable
A  Their training doesn't lend itself O 2 Qs QO st 4 10 Qo
towards trust: - o 9 tetramorph @ 8
o Unsupervised pretraining
o Supervised finetuning
o RLHF

d An understandable fear of
hallucinations and malicious
outputs.
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H State of the Art




The Transformer model

A Transformers Models have become ubiquitous
in Natural Language Processing

A  Pretraining + finetuning

d  Still the backbone!
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Attention is all you need!
Layer:| 5 | Attention: | Input - Input %)
Q  Attention is the method that allows the model to
"attend” to different positions of the input THe
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Vaswani, Ashish, et al. "Attention is all you need." d_ d_
Advances in neural information processing systems 30 (2017).



Pretraining

O Masked language modeling
(Encoders)

Q  Causal language modeling
(Decoders)

d Denoising autoencoders
(Encoder+decoder)
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Al model

H Interpretability output




The Case of Interpretability

A  The development of powerful state-of-the-art NLMs comes at the cost of
interpretability, since complex NN models offer little transparency about their
inner workings and their abilities.

Objectives:

A  Understand the nature of Al systems » be faithful to what influences the Al
decisional process.

Qd  Empower Al system users » derive actionable useful insights from Al choices



What's going on?
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B Static approaches




Probings

[ Core idea: use supervised models (the probes) to determine what is latently
encoded in the hid

A Representations h osyntactic and
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[CLS] Why would you want a chihuahua ? [SEP]




Layerwise p scores for the 68

Li“g“iStic probings linguistic features.
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[Linguistic Profiling of a Neural Language Model](https://aclanthology.org/2020.coling-main.65/) (Miaschi et al.,, COLING 2020)




Mechanistic Interpretability

313 3a:88 3110

40 60 80

Sequence position

3ain 3a70

3a:106

CTION
SUPERPOSITION CIRCUITS HEADS
The specific arrangements of Attention heads in
The phenomenon where neurons and attention heads transformer models
individual neurons within transformer models specialized in detecting and
represent multiple, that collaboratively perform copying repeated token
distinct computational tasks or patterns, enabling the model

overlapping features rather

- . operations, enabling to generalize by inducing
than a single, distinct structured processing and simple structural rules from
concept. representation of information. prior context.




Mechanistic Interpretability - The residual

stream

O At any point during the forward pass, the residual stream is
simply the sum of the activations of all prior
(Attention+MLP) layers along with the initial embedding.

d  Attention heads use their Wv and Wo matrices to read and
write from the residual stream.

O  These matrices help understand which portions of the
residual stream individual attention heads modify, as well
as which portions they use to perform this modification.

The residual stream is modified by a sequence
of MLP and attention layers “reading from” and
“writing to” it with linear operations.

Each layer “writes” to the residual

2 stream by adding a linear
© projection of its results.

==
2
r—@—’ Each layer “reads”

from the residual stream
with a linear projection.




Mechanistic Interpretability

Feature activation distributions for The Golden Gate Bridge Color shows Claude

specificity scores
N Note: Most data points have an activation of exactly zero, . 0 Irrelevant
meaning there's technically infinite density at zero. . 1 Only vaguely related
. 2 Related to nearby text
@:

Cleanly identifies the
text

Density

Using SAE!

Conditional
distribution

oo N

Examples
inputs
sampled
from
intervals

Images and
underlined
tokens have
activation

e and has similar coloring, it is often<> compared " THE GOLDEN@GATEMBRIDGE ." "YES SIRREE, GORGEOUS AND GL

level within
the outlined 4o Bridge." " Golden." " Okay, Presidio." "Union Square. speed
region

he Santa Monica Bay, setting over the mountains of Malibu/ d that it was.<< «Golden Gate(@BFidgé wind resistance barri

ere just a short bike«<ride away (crossing the@iG6 bridge) te a sight. I know the<golden@i§@l® bridge often does, atl

Templeton, et al., "Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet", Transformer Circuits Thread, 2024.
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B Our approach




The geometry of Large Language Models
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The basics

O  Narrow Cone Hypothesis (Ethayarajh 2019)- - Models are not isotropic, i.e., they do not
uniformly utilize the embedding space.

O  Manifold Hypothesis (Clayton, 2015) - High Dimensional data lies on a manifold of much
lower dimensionality than the number of features.

Months of the year Years of the 20th century

Mistral 7B gpt2-small
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IsoScore

2D Gaussian Points: X PCA Reconfig of X

,:. I;f*;? — ,ﬁw —

°
®e 0 4

o
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3) Compute covariance of

1) Point cloud X in 2) Project X using PCA to get
R2 XPCA. XPCA,
|
|
V2 I (141 0.16)- (1 1)]|
| (1.80 0.20) || ( ) 2(2 — /2) 0.22
4) Normalize the diagonal of X*“Ato 5) Calculate the Euclidean 6) Linearly rescale to be
have the same norm as (1,1) to get distance between V*°A and (1,1) in the interval [0,1].

V/PCA, then normalize.



LinearID

1) Point cloud X in R%

2) Standardize features and perform PCA

Sd) YL
Ai

3) Compute cumulative sums, normalizes by total ~ S(d) = S(D) 5D

i=1

4) Finds smallest d such that:

any variants exist




Nonlinear metric: TWoNN

1) Point cloud X in R? xi be uniformly sampled on a manifold

A e %o with intrinsic dimension d
.
¢ ) T2
° 2) Compute i =
° Ti1 d
00 ® 3) The the probability distribution of fi; is p(pld) = —75
° .‘.' ¢ where d is the Intrinsic Dimensionality H;
®
Tiig ® . e
L ril : 4) Infer ID from the empirical probability distribution.
L
® L 5) Repeat the calculation selecting a fraction of points at
° P random. This gives the ID as a function of the scale.
°* L, 0
>

~ Many caveats!



Some works

Geometric Signatures of Compositionality Across a Language Model's Lifetime (Jin Hwa Lee, Thomas
Jiralerspong, Lei Yu, Yoshua Bengio, Emily Cheng)

- Nonlinear ID tends to capture deeper semantic / compositional structure
- Linear dimensionality tends to correlate more with superficial / input complexity

The [quality;.ADJ] [nationality;.ADJ]
[joby.N] [action;.V] the [size;.ADJ]
[texture.ADJ] [color.ADJ] [animal.N] then
[actiony.V] the [sizey.ADJ] [qualitysy.ADJ]
[nationalitys.ADJ] [jobs.N].

Sentences 17 tokens long, 12 semantic categories and uniformly sample a 50-word vocabulary for
each category, categories’' vocabularies are disjoint. During data

generation, k-grams are independently sampled, which constrains the degrees of freedom in
each sentence.



https://arxiv.org/search/cs?searchtype=author&query=Lee,+J+H
https://arxiv.org/search/cs?searchtype=author&query=Jiralerspong,+T
https://arxiv.org/search/cs?searchtype=author&query=Jiralerspong,+T
https://arxiv.org/search/cs?searchtype=author&query=Yu,+L
https://arxiv.org/search/cs?searchtype=author&query=Bengio,+Y
https://arxiv.org/search/cs?searchtype=author&query=Cheng,+E

Some works

Emergence of a High-Dimensional Abstraction Phase in Language Transformers (Emily Cheng, Diego
Doimo, Corentin Kervadec, luri Macocco, Jade Yu, Alessandro Laio, Marco Baroni)

- Across multiple pre-trained transformer LMs and diverse datasets, there is a phase (layer region) in which the
representations reach a peak in intrinsic dimensionality: this corresponds to the first full linguistic abstraction of the
input

-The earlier onset of this high-dimensional abstraction phase correlates with better language modeling
performance. In other words, models that “reach abstraction earlier” tend to be stronger.

3.75 A 1 =
& ® w— it
T model
i 3.50 A ‘ x ® llama
8 b & mistral
— 3:257 = : ® olmo
8 = ® opt 4
T 3.00 ® pythia
o X . Zorpkus
3 ookcorpus
0 2.75 0=-0.46 (0.09) | - . p=0.65(0.01) | x e
B wikitext
2,50 T T T T T T T T
30 40 50 60 0.2 0.3 0.4 0.5 0.6
max ID across layers relative ID peak onset
(Left): Surprisal negatively correlates to maximum ID with Spearman p = -0.46, p = 0.09, meaning that higher ID indicates better LM
performance. (Right): Surprisal positively correlates to ID peak onset, p = 0.65, p = 0.01, meaning that an earlier ID peak indicates better
LM performance.


https://arxiv.org/search/cs?searchtype=author&query=Cheng,+E
https://arxiv.org/search/cs?searchtype=author&query=Doimo,+D
https://arxiv.org/search/cs?searchtype=author&query=Doimo,+D
https://arxiv.org/search/cs?searchtype=author&query=Kervadec,+C
https://arxiv.org/search/cs?searchtype=author&query=Macocco,+I
https://arxiv.org/search/cs?searchtype=author&query=Yu,+J
https://arxiv.org/search/cs?searchtype=author&query=Laio,+A
https://arxiv.org/search/cs?searchtype=author&query=Baroni,+M

Some works

The Representation Landscape of Few-Shot Learning and Fine-Tuning in Large Language Models (Diego
Doimo, Alessandro Serra, Alessio Ansuini, Alberto Cazzaniga)

- Both ICL and SFT show a sharp transition around the middle layers: before that, the geometry /
landscape is relatively smooth or semantically organized; after, it shifts to more task-specific clustering.

Llama 3 8b Llama 3 8b
220 — 80.0
5% —— 0 shot pt 735 —— 0 shot pt
—— 1 shot pt —— 1 shot pt
17.6] —— 2 shot pt 670 —— 2shot pt
154 — 5 shotpt L 60.5 —— 5 shot pt
132 0 shot ft 5 54.0 0 shot ft
’ 8 475
0110 1s)
C 410
8.8 )
-g 345
6.6 S 28.0
=
%4 215
22 15.0
0.0
1 5 9 13 17 21 25 29 1 5 9 13 17 21 25 29
Layer Layer

Figure shows the ID (left), the number of density peaks (center), and the fraction of core points (right) for the last-token representation of
Llama3-8b for an increasing number of few-shots and fine-tuned models. The three quantities change in the proximity of layer 17 in a
two-phased fashion.




Some works

Intrinsic Dimension Estimation for Robust Detection of Al-Generated Texts (Eduard Tulchinskii, Kristian
Kuznetsov, Laida Kushnareva, Daniil Cherniavskii, Serguei Barannikoyv, Irina Piontkovskaya, Sergey Nikolenko,
Evgeny Burnaev)

- For several alphabetic languages, human-written texts tend to have an average ID = 9, while Al-generated
texts have ~1.5 lower ID on average

Intrinsic dimension (PHD) of English texts generated by different models

Natural texts

GPT-3.5-175B
(davinci-0003)

GPT2-1.5B

OPT-13B

Boxplots of PHD distributions for different generative models in comparison to
human-written text on Wikipedia data. Embeddings are obtained from RoBERTa-base.



https://arxiv.org/search/cs?searchtype=author&query=Tulchinskii,+E
https://arxiv.org/search/cs?searchtype=author&query=Kuznetsov,+K
https://arxiv.org/search/cs?searchtype=author&query=Kuznetsov,+K
https://arxiv.org/search/cs?searchtype=author&query=Kushnareva,+L
https://arxiv.org/search/cs?searchtype=author&query=Cherniavskii,+D
https://arxiv.org/search/cs?searchtype=author&query=Barannikov,+S
https://arxiv.org/search/cs?searchtype=author&query=Piontkovskaya,+I
https://arxiv.org/search/cs?searchtype=author&query=Nikolenko,+S
https://arxiv.org/search/cs?searchtype=author&query=Burnaev,+E
https://arxiv.org/search/cs?searchtype=author&query=Burnaev,+E
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B Dynamic approaches




Topological Data Analysis

Layer 1 Intersection Layer Layer 2

K, KNk,
K, Ky, K,y / K,
Third step: Intersection Layers e o - \/ ~ P
Persistent homology Zigzag persistent homology




ODE solvers
Continuous dynamical system ﬁ

¢
WM z(t) = z(0) +/ f(s,z(s);05)ds
S | ! | 0
PCA<Z/0> Y1 Y2

b—d—8————5  with 2(0) = h(y;6h),

I
Internal |
Space |

—
B
-
>
-

A NN is just a function!

g

Tokens

Water vapor is denser than air.

Since we have a continuous-time system, standard backpropagation cannot be directly applied

Adjoint method  a(t) = _(’)%([_t')'
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H What we have done




Neural manifold
Analogies?

Years of the 20th century

gpt2-small
wav2vec 2.0 human brain
deep net trained on 417 volunteers
600h of speech with recorded with fMRI

self-supervised learning




1- From Human Reading to NLM
Understanding: Evaluating the Role of

Eye-Tracking Data in Encoder-Based Models

O “How does human-like learning (e.g., eye-tracking) affect geometry and attention?”
O “How do fine-tuning strategies reshape geometry, and are these changes permanent or
task-specific?”




Eye-tracking data

We used the English section of the GECO corpus, that contains eye-tracking data for 12 users
reading a novel by Agatha Christie. We treat users separately!

WORD FFD TRT FRNF NFIX FRD

The 95 381 | 1 2 95
) ’
BCnl - ags UL I I‘c intense 54 828 | 1 3 54
exp@redse=a@yred P4y was2@
L N , , , interest 333 565 1 2 333
extigQraaa®<@goking lithe m@-——e-@shady) —
groetgariivgicet ®ur-in@es but carged aroused 78 428 | 1 3 78
Org o @icgly.
“ - in 154 | 154 | 1 1 154
the 165 | 165 | 1 1 165




Injection strategies

i) Intermediate finetuning

ii.) Finetuning with LoRa
adapters

iii.) Multi-task finetuning with
interleaved steps

iv.) Multi-task finetuning with
eye-tracking silver labels

- Josy 3%
i) ii.) i

DST w

EYE DST EYE DST
iii.) PT > > > e >
INTERLEAVED STEPS

) EYE PREDICT | SILVER
iv) ( PT - - - - - - > LABELS
DST

v
. EYE+DST .




Results -1

Downstream Task

Fine-tuning COLA COMP MNLI M/MM MRPC QNLI QQP RTE SST-2 STSB WNLI AVG

INT-FULL 0.56 0.88/0.88 0. .9 90 0.70

INT-LAST3 0.25 0.70/0.71 0.54 0.88 0.81

INT-LAST2 0.15 0.85 0.62/0.64 0.77 0.75 0.77 0.53 0.86 0.74

INT-CLF 0.00 0.43/0.44 0.75 0.76 0.50
LORA 0.41 0.85/0.85 0.9 0.76
MT-IL 0.53 0.83/0.83 0.75 0.52

MT-SILV 0.51 0.88/0.87 ’ 0.60 0.50
DST-ONLY 0.60 091 0.88 /0.88 0.90 0.93 0.90 0.77 0.93 0.90 0.56 0.83

Intermediate full finetuning (INT-FULL) and the two Multi-task approaches,
specially the one with interleaved steps (MT-IL) generally preserve performances
on downstream-tasks.



Results - 2

Attention correlation (last layer)

Fine-tuning COLA CcoOMP MNLI MRPC QNLI QQprP RTE SST-2 STSB WNLI AVG

INT-FULL
INT-LAST3
INT-LAST2
INT-CLF
LORA
MT-IL
MT-SILV

DST-ONLY 0.06 0.08 0.05 0.01 0.07 0.03 0.02 0.07 0.11 0.12 0.08

0.05 = 0.1¢€ 0.06 008 012 : 0.09

Overall all methods increase correlation coefficients, specially
iIntermediate finetuning (excluding INT-FULL), followed by multitask

approaches.



Results - 3

Linear ID IsoScore® x 103

F-T COLA COMP MNLI MRPC QNLI QQP RTE SST-2 STSB WNLI AVG F-T COLA COMP MNLI MRPC QNLI QQP RTE SST-2 STSB WNLI AVG
INT-FULL 127 89 191 185 242 11 161 4 32 127 117 INT-FULL  0.74 1.19 275 1559 3.03 035 595 088 071 974 4.09
INT-LAST3 173 135 194 162 148 154 154 92 142 154 151 INT-LAST3 792 296 740 6.79 210 353 436 0.69 346 500 442
INT-LAST2 162 148 166 160 160 153 157 142 158 158 157 INT-LAST2 589 378 745 505 558 4.08 435 324 577 469 499
INT-CLF 160 160 160 160 160 160 160 160 160 160 160 INT-CLF 499 499 499 499 499 499 499 499 499 499 499
LORA 184 144 310 158 279 256 166 202 146 163 201 LORA 1126 536 3023 847 11.34 2862 6.01 999 272 527 1193
MT-IL 232 154 110 179 228 88 155 251 228 152 178 MT-IL 434 502 139 271 406 1.07 252 583 466 3.69 3.53
MT-SILV 249 209 233 268 251 207 206 221 264 209 232 MT-SILV 17.38 10.76 8.28 12.00 11.89 6.57 10.14 11.26 21.56 1197 12.18
DST-ONLY 289 249 249 249 249 3 278 4 249 16 186 DST-ONLY 6.53 3594 458 15.08 4.69 040 28.03 1.17 11.14 0.27 10.78
BASE 297 - BASE 28.69 -

EYE-ONLY 160 - EYE-ONLY 497 -

IN Most tasks, we observe that eye-tracking data injection yields larger

reductions in isotropy and intrinsic dimensionality than standard

finetuning, yet preserves downstream performance.




2 - The Role of Eye-Tracking Data in Encoder-Base
Models: an In-depth Linguistic Analysis

“Can geometry capture and distinguish linguistic features, and is this consistent
across languages?”




Motivations

Why eye-tracking in NLP?
e Neural Language Models are powerful but hard to interpret.
e Cognitive signals (like eye-tracking data) offer insight into human language processing.

e Goal: study the impact of eye-tracking data injection on the way NLMs build words representations.

Layer: | 5 | Attention:| Input - Input %]

cross_
the_
street_
because_
it

was_
too_

tire

d

The_ The_
ﬁnimal_ RS animal_
didn_ didn_
Attention C NN\ t Embedding space

patterns




Linguistically informed approach

To enable a more fine-grained analysis of how
ET fine-tuning affects word representations,
we condition our evaluation on linguistic
features extracted from UD treebanks:

A=2 A_:_:Q
e Word length A S, P “wa
’ N ¢
e Part-of-Speech 4 B e g 2 .- 1:\ 5
. . ’ e Y ’ "
e Position in sentence ;7 '/ W v “
. . 4
e Distance from syntactic head ’ i '
Luca is eating an apple
PROPN AUX VERB DET NOUN
0 1 2 3 4

2 1 0 1 -2




Eye-tracking data
Eye-tracking data are measurement of eye-movements,
in this case collected during reading.

We used the English and Italian sections of the MECO
eye-tracking corpus.

The 95 381 1 2 95
intense | 54 | 828 | 1 3 54
interest 333 565 | 1 2 333
aroused 78 428 | 1 3 78
in 154 154 1 1 154
the 165 165 1 1 165




Attention correlation

Italian English

model
—e— finetuned
—e~ pre-trained

model
—e— finetuned
—e— pre-trained

2 4 6 8 10 12 2 4 6 8 10 12
layer layer

As shown by literature, fine-tuning on eye-tracking increases
correlations between model attention (attention weights) and
human attention (TRT).



Representation space

What we know already: 010

e Embeddings from NLM tend to be anisotropic
e They need way less dimension that their ambient space

IsoScore

After ET fine-tuning... 000

Representations become even more anisotropic as depth increases!
e Representations have less degrees of freedom as depth increase!

Linear ID

In line with previous studies!

IsoScore

- pretrained
—— mean user

Linear-ID

- pretrained
—— mean user




Representation space - POS classes

LinearID ¢ pretrained only

T — o e Fine-tuning further anisotropize

— o = o and reduces dimensions.

e Content words (NOUN,
PROPN,VERB) tend to require more
dimensions uniformly in space.




Representation space - Head Distance classes

LinearID « pretrained only

/—ggggg o e Notable asymmetry already in the
== = = pre-trained model based on the
’ ’ ) b i * . position of the dependent.

LinearlD « fine-tuned

e Related to closed functional words
but also other unknown effects.

o 400
=

o
=
=300




Some statistics

Top UD relation Head dist.  Span length  Head arity  Left of head
POS tokens TTR label share val share val share wval share share examples
NOUN 2138 1590 nmod 29.67 3.00 29.29 5.00 17.12 2.00 39.57 17.64 anni , presidente
. parte
ADP 16.40 0.28 case 91.07 2.00 51.39  2.00 39.60 0.00 99.64 98.39 di,in.a
PUNCT 11.94 0.08 punct 100.00  1.00 25.21 1.00 99.74 0.00100.00 21.25 o
DET 10.82 0.55 det 92.27 1.00 85.33 2.00 61.64 0.00 99.92 99.71 il. la, un
VERB 9.09 33.21 root 38.23  0.00 38.23 8.00 17.80 3.00 26.88 4.58 ha . ¢ . hanno
ADJ 7.14 _27.09 amod 8440 1.00 75.81 8.00 18.30 0.00 75.56 26.53 primo , prima ,
nuovo ITALIAN
PROPN 523  38.22 nmod 37.92  1.00 33.56 6.00 20.66 1.00 37.53 13.22 italia .
shakespeare .
balzac
AUX 4.23 1.91 aux 52.11  1.00 70.09 1.00 28.38 0.00 99.91 95.11 ¢.sono. ha
ADV 4.12 5.47 advmod 91.00 1.00 48.10 3.00 31.74 0.00 84.86 79.64 non , pitl, anche
PRON 365 165 nsubj 2029  1.00 42.91 3.00 38.66 0.00 68.27 7819  che, si. chi
CCONJ 297 0.49 cc 99.92 1.00 37.50 1.00 82.18 0.00 99.99 99.91 €, 0, ma
NUM 1.76  23.56 nummod 67.70 1.00 46.54 4.00 28.27 0.00 64.92 50.24 due, 1, tre . . .
SCONJ 111  1.60 mark 91.71 100 20.29 3.00 41.87 0.00 99.47  92.20  che.se, lefe rent Statlstlcs
’ ’
Top UD relation ~ Head dist. ~ Spanlength  Head arity  Left of head E——— S i m i I ar scores
POS tokens TTR label share val share val share val share share examples
NOUN 17.24 20.54 obj 20.23 2.00 23.75 4.00 18.33 2.00 27.81 29.76 time, people,
way
PUNCT 11.35 0.42 punct 100.00 1.00 26.80 1.00 96.14 0.00100.00 34.27 U AR
VERB 11.34  16.01 root 30.91 0.00 30.91 4.00 27.70 3.00 27.54 8.40 have, get, know
PRON 9.37 0.76 nsubj 55.28 1.00 50.13 2.00 26.52 0.00 89.92 79.57 i, you,it
ADP 9.01 0.66 case 92.33 1.00 39.82 2.00 64.49 0.00 99.09 92.48 of, in, to
DET 8.27 0.22  det 96.52 1.00 57.66 3.00 60.41 0.00 98.18 98.53 the, a, this
ADJ 6.49  17.05 amod 68.24 1.00 56.63 4.00 22.45 0.00 65.24 70.36 other, new, good ENGL I S H
AUX 5.91 0.78 aux 51.22 1.00 47.30 2.00 31.25 0.00 98.13 96.61 is, was, be

PROPN 575 33.99 compound 20.15 1.00 35.26 5.00 17.75 0.00 46.26 42.67 bush, us, al
ADV 5.09 7.22 advmod 93.20 1.00 54.05 4.00 36.17 0.00 85.62 69.22 so0, when, just
CCONJ  3.40 0.32 cc 98.25 1.00 43.53 3.00 86.27 0.00 99.26 99.49 and, but, or
PART 2.18 0.17 mark 76.42 1.00 82.29 2.00 76.85 0.00 99.15 98.51 to, not, too
SCONJ 1.96 1.63 mark 98.43 2.00 24.30 2.00 40.58 0.00 98.56 98.51 that, if, as
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B Ongoing work




The impact of data ordering on the
pretraining phase

“Does curriculum learning reshape geometry, and can early geometry
predict performance?”




Evaluation

w
Fine-tuni ng @Q fine-tuning ‘Q'
Dataset ﬁ‘ @\h

Fine-tuned
LLM

nnnnnnnnnnn

Evaluation strategies Probing

L S N N N I S |
Why would you want a chihuahua ? [SEP]

000 8

Representation space
Isoscore (Isotropy)

Linear ID (@99%)




Ordering strategies ||

Ordering strategies:
.. and anti-curriculum!

Q  Sentences’ length

Q  Gulpease _ o . .

@ ReadlT }- Linguistically Motivated ordering
Q

3 Random orderings

BERT-medium

f__’ 10000000 sentences from Wikipedia.

&
[T

# trounlng steps 80000 112000
~ J\. ~ J

Layers,

400 800

~
Epoch Epoch

Epoch



Finetuning @
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score
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model . 0.80
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—e— gulpease 0.78 gulpease_inverted
random —e— gulpease
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20000 40000 60000 80000 100000 1200
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Qualitatively similar, only difference is the “speed of convergence”.



score

Probing @

avg_links_len, layer 8.0
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Most features have plots similar to the one on the left, with some exceptions...



Representation space ©

Layer 8 - IsoScore

Linear ID over Checkpoints (Layer 8)

rand_inverted 400
-@- rand
quipease_inverted
-8 quipease
sentence_length_inverted
-8 sentence_length
readit_inverted

-0 readit 330
010 rand1_inverted
-@- randl
rand2_inverted
-@- rand2 -
=
- 0.08 T
s
5 § 300
5]
k) £
v a
S K
3 0.06 £
= =
2 250
5
0.04
0.02
200
0.00
0 20000 40000 60000 80000 100000
Checkpoint o] 20000 40000 60000 80000 100000

Checkpoint

Qualitatively different behaviour between models with curriculum-ordered and not ordered data!



Future work °¢-

How will this research field evolve? — Unknown, the field is blooming
now!

e About us....
- Keep working on our curriculum learning project.

-  Expand our second paper and work on a “Linguistic Profiling of
Geometric Spaces” #£..

- Visiting period abroad while working on my PhD proposal §.
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- Statistical Learning and Large Data1&2 (40 CFU) ———» 80 CFUTOT EXAMS DONE!
- Predictive Models for Time Series Data (24 CFU)
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- “From Human Reading to NLM Understanding: Evaluating the Role of Eye-Tracking Data in Encoder-Based Models". In
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https://wiki.nlpl.eu/Community/training
https://sites.google.com/unisi.it/lot-spring-school/
https://phd-ai-society.di.unipi.it/summer-schools/ai-society-2025-summer-school/
https://wiki.nlpl.eu/Community/training
https://sites.google.com/unisi.it/lot-spring-school/
https://phd-ai-society.di.unipi.it/summer-schools/ai-society-2025-summer-school/

Questions?




References &=

o 0o 0o o0 d o o0 d oo OO0 oo o

O oood

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and lllia Polosukhin (2017). “Attention is all you need”.
In: Advances in neural information processing systems 30.

Rogers, Anna, Olga Kovaleva, and Anna Rumshisky (2020). “A Primer in BERTology: What We Know About How BERT Works”. In: Transactions of the ACL.
Miaschi, Alessio and Felice Dell'Orletta (2020). “Contextual and non-contextual word embeddings: an in-depth linguistic investigation”. In: Proceedings of the 5th
Workshop on Representation Learning for NLP, pp. 110-119

Hewitt, John and Christopher D. Manning (June 2019). “A Structural Probe for Finding Syntax in Word Representations”. In: Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Ed. by Jill
Rudman, William, Nate Gillman, Taylor Rayne, and Carsten Eickhoff (May 2022a). “IsoScore: Measuring the Uniformity of Embedding Space Utilization”. In:
Findings of the Association for Computational Linguistics: ACL 2022. Ed. by Smaranda Muresan, Preslav Nakov, and Aline Villavicencio. Dublin, Ireland:
Association for Computational Linguistics, pp. 3325-3339.

Team, Anthropic Interpretability (2024). The Engineering Challenges of Scaling Interpretability. Anthropic Research Blog.
https://www.anthropic.com/research/engineering-challenges-interpretability

Bengio, Yoshua, J "er"ome Louradour, Ronan Collobert, and Jason Weston (2009). “Curriculum learning”. In: Proceedings of the 26th annual international
conference on machine learning, pp. 41-48.

Cai, Xingyu, Jiaji Huang, Yuchen Bian, and Kenneth Church (2021). “Isotropy in the contextual embedding space: Clusters and manifolds”. In: International
conference on learning representations.

Ansuini, Alessio, Alessandro Laio, Jakob H Macke, and Davide Zoccolan (2019). “Intrinsic dimension of data representations in deep neural networks”. In: Advances
in Neural Information Processing Systems 32

Cheng, Emily, et al. "Emergence of a High-Dimensional Abstraction Phase in Language Transformers." The Thirteenth International Conference on Learning
Representations.

Modell, Alexander, Patrick Rubin-Delanchy, and Nick Whiteley. "The Origins of Representation Manifolds in Large Language Models." arXiv e-prints (2025):
arXiv-2505.

Rajaee, Sara and Mohammad Taher Pilehvar (2021). “How Does Fine-tuning Affect the Geometry of Embedding Space? A Case Study on Isotropy”. In: Findings of
EMNLP.

Doimo, Diego, et al. "The representation landscape of few-shot learning and fine-tuning in large language models." Advances in Neural Information Processing
Systems 37 (2024): 18122-18165.

Tulchinskii, Eduard, et al. "Intrinsic dimension estimation for robust detection of ai-generated texts." Advances in Neural Information Processing Systems 36
(2023): 39257-39276.

Valeriani, Lucrezia, Diego Doimo, Francesca Cuturello, Alessandro Laio, Alessio Ansuini, and Alberto Cazzaniga

(2023). “The geometry of hidden representations of large transformer models”. In: Advances in Neural Infor-

mation Processing Systems 36, pp. 51234-51252

Elhage, et al., "A Mathematical Framework for Transformer Circuits", Transformer Circuits Thread, 2021.

Gardinazzi, Yuri, et al. "Persistent topological features in large language models." arXiv preprint arXiv:2410.11042 (2024).

Li, Qing, et al. "HD-NDEs: Neural Differential Equations for Hallucination Detection in LLMs." arXiv e-prints (2025): arXiv-2506

Dini, Luca, et al. "From Human Reading to NLM Understanding: Evaluating the Role of Eye-Tracking Data in Encoder-Based Models." Proceedings of the 63rd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2025.

Dini, Luca, et al. "In the eyes of a language model: A comprehensive examination through eye-tracking data." Neurocomputing (2025): 130617.



